Articles | Volume 15, issue 17
https://doi.org/10.5194/bg-15-5395-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-15-5395-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Synthetic ozone deposition and stomatal uptake at flux tower sites
Jason A. Ducker
CORRESPONDING AUTHOR
Department of Earth, Ocean, and Atmospheric Science, Florida State
University, Tallahassee, Florida, USA
Christopher D. Holmes
Department of Earth, Ocean, and Atmospheric Science, Florida State
University, Tallahassee, Florida, USA
Trevor F. Keenan
Lawrence Berkeley National Laboratory, University of California,
Berkeley, California, USA
Department of Environmental Science, Policy, and Management,
University of California, Berkeley, California, USA
Silvano Fares
Council of Agricultural Research and Economics (CREA), Research
Centre for Forestry and Wood, Arezzo, Italy
Allen H. Goldstein
Department of Environmental Science, Policy, and Management,
University of California, Berkeley, California, USA
Ivan Mammarella
Institute for Atmosphere and Earth System Research/Physics, P.O. Box
68, Faculty of Science, University of Helsinki, Finland
J. William Munger
Department of Earth and Planetary Sciences, Northwestern University,
Evanston, Illinois, USA
Jordan Schnell
NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA
Related authors
Joey C. Y. Lam, Amos P. K. Tai, Jason A. Ducker, and Christopher D. Holmes
Geosci. Model Dev., 16, 2323–2342, https://doi.org/10.5194/gmd-16-2323-2023, https://doi.org/10.5194/gmd-16-2323-2023, 2023
Short summary
Short summary
We developed a new component within an atmospheric chemistry model to better simulate plant ecophysiological processes relevant for ozone air quality. We showed that it reduces simulated biases in plant uptake of ozone in prior models. The new model enables us to explore how future climatic changes affect air quality via affecting plants, examine ozone–vegetation interactions and feedbacks, and evaluate the impacts of changing atmospheric chemistry and climate on vegetation productivity.
Shihan Sun, Amos P. K. Tai, David H. Y. Yung, Anthony Y. H. Wong, Jason A. Ducker, and Christopher D. Holmes
Biogeosciences, 19, 1753–1776, https://doi.org/10.5194/bg-19-1753-2022, https://doi.org/10.5194/bg-19-1753-2022, 2022
Short summary
Short summary
We developed and used a terrestrial biosphere model to compare and evaluate widely used empirical dry deposition schemes with different stomatal approaches and found that using photosynthesis-based stomatal approaches can reduce biases in modeled dry deposition velocities in current chemical transport models. Our study shows systematic errors in current dry deposition schemes and the importance of representing plant ecophysiological processes in models under a changing climate.
Stefano Galmarini, Paul Makar, Olivia E. Clifton, Christian Hogrefe, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Tim Butler, Jason Ducker, Johannes Flemming, Alma Hodzic, Christopher D. Holmes, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Juan Luis Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Sam Silva, and Ralf Wolke
Atmos. Chem. Phys., 21, 15663–15697, https://doi.org/10.5194/acp-21-15663-2021, https://doi.org/10.5194/acp-21-15663-2021, 2021
Short summary
Short summary
This technical note presents the research protocols for phase 4 of the Air Quality Model Evaluation International Initiative (AQMEII4). This initiative has three goals: (i) to define the state of wet and dry deposition in regional models, (ii) to evaluate how dry deposition influences air concentration and flux predictions, and (iii) to identify the causes for prediction differences. The evaluation compares LULC-specific dry deposition and effective conductances and fluxes.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Anam M. Khan, Olivia E. Clifton, Jesse O. Bash, Sam Bland, Nathan Booth, Philip Cheung, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christian Hogrefe, Christopher D. Holmes, Laszlo Horvath, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Perez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Donna Schwede, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamas Weidinger, Zhiyong Wu, Leiming Zhang, and Paul C. Stoy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3038, https://doi.org/10.5194/egusphere-2024-3038, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Vegetation removes tropospheric ozone through stomatal uptake, and accurately modeling the stomatal uptake of ozone is important for modeling dry deposition and air quality. We evaluated the stomatal component of ozone dry deposition modeled by atmospheric chemistry models at six sites. We find that models and observation-based estimates agree at times during the growing season at all sites, but some models overestimated the stomatal component during the dry summers at a seasonally dry site.
Kouji Adachi, Jack E. Dibb, Joseph M. Katich, Joshua P. Schwarz, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Jeff Peischl, Christopher D. Holmes, and James Crawford
Atmos. Chem. Phys., 24, 10985–11004, https://doi.org/10.5194/acp-24-10985-2024, https://doi.org/10.5194/acp-24-10985-2024, 2024
Short summary
Short summary
We examined aerosol particles from wildfires and identified tarballs (TBs) from the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign. This study reveals the compositions, abundance, sizes, and mixing states of TBs and shows that TBs formed as the smoke aged for up to 5 h. This study provides measurements of TBs from various biomass-burning events and ages, enhancing our knowledge of TB emissions and our understanding of their climate impact.
Piaopiao Ke, Anna Lintunen, Pasi Kolari, Annalea Lohila, Santeri Tuovinen, Janne Lampilahti, Roseline Thakur, Maija Peltola, Otso Peräkylä, Tuomo Nieminen, Ekaterina Ezhova, Mari Pihlatie, Asta Laasonen, Markku Koskinen, Helena Rautakoski, Laura Heimsch, Tom Kokkonen, Aki Vähä, Ivan Mammarella, Steffen Noe, Jaana Bäck, Veli-Matti Kerminen, and Markku Kulmala
EGUsphere, https://doi.org/10.5194/egusphere-2024-1967, https://doi.org/10.5194/egusphere-2024-1967, 2024
Short summary
Short summary
Our research explores diverse ecosystems’ role in climate cooling via the concept of CarbonSink+ Potential. We measured CO2 uptake and loaal aerosol production in forests, farms, peatlands, urban gardens, and coastal areas across Finland and Estonia. The long-term data reveal that while forests are vital regarding CarbonSink+ Potential, farms and urban gardens also play significant roles. These insights can help optimize management policy of natural resource to mitigate global warming.
Kim A. P. Faassen, Jordi Vilà-Guerau de Arellano, Raquel González-Armas, Bert G. Heusinkveld, Ivan Mammarella, Wouter Peters, and Ingrid T. Luijkx
Biogeosciences, 21, 3015–3039, https://doi.org/10.5194/bg-21-3015-2024, https://doi.org/10.5194/bg-21-3015-2024, 2024
Short summary
Short summary
The ratio between atmospheric O2 and CO2 can be used to characterize the carbon balance at the surface. By combining a model and observations from the Hyytiälä forest (Finland), we show that using atmospheric O2 and CO2 measurements from a single height provides a weak constraint on the surface CO2 exchange because large-scale processes such as entrainment confound this signal. We therefore recommend always using multiple heights of O2 and CO2 measurements to study surface CO2 exchange.
Aki Vähä, Timo Vesala, Sofya Guseva, Anders Lindroth, Andreas Lorke, Sally MacIntyre, and Ivan Mammarella
EGUsphere, https://doi.org/10.5194/egusphere-2024-1644, https://doi.org/10.5194/egusphere-2024-1644, 2024
Short summary
Short summary
Boreal rivers are significant sources of carbon dioxide (CO2) and methane (CH4) to the atmosphere but the controls of these emissions are uncertain. We measured four months of CO2 and CH4 exchange between a regulated boreal river and the atmosphere with eddy covariance. We found statistical relationships between the gas exchange and several environmental variables, the most important of which were dissolved CO2 partial pressure in water, wind speed, and water temperature.
Qindan Zhu, Rebecca H. Schwantes, Matthew Coggon, Colin Harkins, Jordan Schnell, Jian He, Havala O. T. Pye, Meng Li, Barry Baker, Zachary Moon, Ravan Ahmadov, Eva Y. Pfannerstill, Bryan Place, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Anthony Bucholtz, John H. Seinfeld, Carsten Warneke, Chelsea E. Stockwell, Lu Xu, Kristen Zuraski, Michael A. Robinson, J. Andrew Neuman, Patrick R. Veres, Jeff Peischl, Steven S. Brown, Allen H. Goldstein, Ronald C. Cohen, and Brian C. McDonald
Atmos. Chem. Phys., 24, 5265–5286, https://doi.org/10.5194/acp-24-5265-2024, https://doi.org/10.5194/acp-24-5265-2024, 2024
Short summary
Short summary
Volatile organic compounds (VOCs) fuel the production of air pollutants like ozone and particulate matter. The representation of VOC chemistry remains challenging due to its complexity in speciation and reactions. Here, we develop a chemical mechanism, RACM2B-VCP, that better represents VOC chemistry in urban areas such as Los Angeles. We also discuss the contribution of VOCs emitted from volatile chemical products and other anthropogenic sources to total VOC reactivity and O3.
Linia Tashmim, William C. Porter, Qianjie Chen, Becky Alexander, Charles H. Fite, Christopher D. Holmes, Jeffrey R. Pierce, Betty Croft, and Sakiko Ishino
Atmos. Chem. Phys., 24, 3379–3403, https://doi.org/10.5194/acp-24-3379-2024, https://doi.org/10.5194/acp-24-3379-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is mostly emitted from ocean surfaces and represents the largest natural source of sulfur for the atmosphere. Once in the atmosphere, DMS forms stable oxidation products such as SO2 and H2SO4, which can subsequently contribute to airborne particle formation and growth. In this study, we update the DMS oxidation mechanism in the chemical transport model GEOS-Chem and describe resulting changes in particle growth as well as the overall global sulfur budget.
Matthew M. Coggon, Chelsea E. Stockwell, Megan S. Claflin, Eva Y. Pfannerstill, Lu Xu, Jessica B. Gilman, Julia Marcantonio, Cong Cao, Kelvin Bates, Georgios I. Gkatzelis, Aaron Lamplugh, Erin F. Katz, Caleb Arata, Eric C. Apel, Rebecca S. Hornbrook, Felix Piel, Francesca Majluf, Donald R. Blake, Armin Wisthaler, Manjula Canagaratna, Brian M. Lerner, Allen H. Goldstein, John E. Mak, and Carsten Warneke
Atmos. Meas. Tech., 17, 801–825, https://doi.org/10.5194/amt-17-801-2024, https://doi.org/10.5194/amt-17-801-2024, 2024
Short summary
Short summary
Mass spectrometry is a tool commonly used to measure air pollutants. This study evaluates measurement artifacts produced in the proton-transfer-reaction mass spectrometer. We provide methods to correct these biases and better measure compounds that degrade air quality.
Lisa Azzarello, Rebecca A. Washenfelder, Michael A. Robinson, Alessandro Franchin, Caroline C. Womack, Christopher D. Holmes, Steven S. Brown, Ann Middlebrook, Tim Newberger, Colm Sweeney, and Cora J. Young
Atmos. Chem. Phys., 23, 15643–15654, https://doi.org/10.5194/acp-23-15643-2023, https://doi.org/10.5194/acp-23-15643-2023, 2023
Short summary
Short summary
We present a molecular size-resolved offline analysis of water-soluble brown carbon collected on an aircraft during FIREX-AQ. The smoke plumes were aged 0 to 5 h, where absorption was dominated by small molecular weight molecules, brown carbon absorption downwind did not consistently decrease, and the measurements differed from online absorption measurements of the same samples. We show how differences between online and offline absorption could be related to different measurement conditions.
Ekaterina Ezhova, Topi Laanti, Anna Lintunen, Pasi Kolari, Tuomo Nieminen, Ivan Mammarella, Keijo Heljanko, and Markku Kulmala
EGUsphere, https://doi.org/10.5194/egusphere-2023-2559, https://doi.org/10.5194/egusphere-2023-2559, 2023
Short summary
Short summary
ML models are gaining popularity in biogeosciences. They are applied as gapfilling methods and used to upscale carbon fluxes to larger areas based on local measurements. In this study, we use Explainable ML methods to elucidate performance of machine learning models for carbon dioxide fluxes in boreal forest. We show that statistically equal models treat input variables differently. Explainable ML can help scientists to make informed solutions when applying ML models in their research.
Clara M. Nussbaumer, Bryan K. Place, Qindan Zhu, Eva Y. Pfannerstill, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Ryan Ward, Anthony Bucholtz, John H. Seinfeld, Allen H. Goldstein, and Ronald C. Cohen
Atmos. Chem. Phys., 23, 13015–13028, https://doi.org/10.5194/acp-23-13015-2023, https://doi.org/10.5194/acp-23-13015-2023, 2023
Short summary
Short summary
NOx is a precursor to hazardous tropospheric ozone and can be emitted from various anthropogenic sources. It is important to quantify NOx emissions in urban environments to improve the local air quality, which still remains a challenge, as sources are heterogeneous in space and time. In this study, we calculate NOx emissions over Los Angeles, based on aircraft measurements in June 2021, and compare them to a local emission inventory, which we find mostly overpredicts the measured values.
Eva Y. Pfannerstill, Caleb Arata, Qindan Zhu, Benjamin C. Schulze, Roy Woods, John H. Seinfeld, Anthony Bucholtz, Ronald C. Cohen, and Allen H. Goldstein
Atmos. Chem. Phys., 23, 12753–12780, https://doi.org/10.5194/acp-23-12753-2023, https://doi.org/10.5194/acp-23-12753-2023, 2023
Short summary
Short summary
The San Joaquin Valley is an agricultural area with poor air quality. Organic gases drive the formation of hazardous air pollutants. Agricultural emissions of these gases are not well understood and have rarely been quantified at landscape scale. By combining aircraft-based emission measurements with land cover information, we found mis- or unrepresented emission sources. Our results help in understanding of pollution sources and in improving predictions of air quality in agricultural regions.
Yutong Liang, Rebecca A. Wernis, Kasper Kristensen, Nathan M. Kreisberg, Philip L. Croteau, Scott C. Herndon, Arthur W. H. Chan, Nga L. Ng, and Allen H. Goldstein
Atmos. Chem. Phys., 23, 12441–12454, https://doi.org/10.5194/acp-23-12441-2023, https://doi.org/10.5194/acp-23-12441-2023, 2023
Short summary
Short summary
We measured the gas–particle partitioning behaviors of biomass burning markers and examined the effect of wildfire organic aerosol on the partitioning of semivolatile organic compounds. Most compounds measured are less volatile than model predictions. Wildfire aerosol enhanced the condensation of polar compounds and caused some nonpolar (e.g., polycyclic aromatic hydrocarbons) compounds to partition into the gas phase, thus affecting their lifetimes in the atmosphere and the mode of exposure.
Olivia E. Clifton, Donna Schwede, Christian Hogrefe, Jesse O. Bash, Sam Bland, Philip Cheung, Mhairi Coyle, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, and Leiming Zhang
Atmos. Chem. Phys., 23, 9911–9961, https://doi.org/10.5194/acp-23-9911-2023, https://doi.org/10.5194/acp-23-9911-2023, 2023
Short summary
Short summary
A primary sink of air pollutants is dry deposition. Dry deposition estimates differ across the models used to simulate atmospheric chemistry. Here, we introduce an effort to examine dry deposition schemes from atmospheric chemistry models. We provide our approach’s rationale, document the schemes, and describe datasets used to drive and evaluate the schemes. We also launch the analysis of results by evaluating against observations and identifying the processes leading to model–model differences.
Qindan Zhu, Bryan Place, Eva Y. Pfannerstill, Sha Tong, Huanxin Zhang, Jun Wang, Clara M. Nussbaumer, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Anthony Bucholtz, John H. Seinfeld, Allen H. Goldstein, and Ronald C. Cohen
Atmos. Chem. Phys., 23, 9669–9683, https://doi.org/10.5194/acp-23-9669-2023, https://doi.org/10.5194/acp-23-9669-2023, 2023
Short summary
Short summary
Nitrogen oxide (NOx) is a hazardous air pollutant, and it is the precursor of short-lived climate forcers like tropospheric ozone and aerosol particles. While NOx emissions from transportation has been strictly regulated, soil NOx emissions are overlooked. We use the airborne flux measurements to observe NOx emissions from highways and urban and cultivated soil land cover types. We show non-negligible soil NOx emissions, which are significantly underestimated in current model simulations.
Alessandro Zanchetta, Linda M. J. Kooijmans, Steven van Heuven, Andrea Scifo, Hubertus A. Scheeren, Ivan Mammarella, Ute Karstens, Jin Ma, Maarten Krol, and Huilin Chen
Biogeosciences, 20, 3539–3553, https://doi.org/10.5194/bg-20-3539-2023, https://doi.org/10.5194/bg-20-3539-2023, 2023
Short summary
Short summary
Carbonyl sulfide (COS) has been suggested as a tool to estimate carbon dioxide (CO2) uptake by plants during photosynthesis. However, understanding its sources and sinks is critical to preventing biases in this estimate. Combining observations and models, this study proves that regional sources occasionally influence the measurements at the 60 m tall Lutjewad tower (1 m a.s.l.; 53°24′ N, 6°21′ E) in the Netherlands. Moreover, it estimates nighttime COS fluxes to be −3.0 ± 2.6 pmol m−2 s−1.
Joey C. Y. Lam, Amos P. K. Tai, Jason A. Ducker, and Christopher D. Holmes
Geosci. Model Dev., 16, 2323–2342, https://doi.org/10.5194/gmd-16-2323-2023, https://doi.org/10.5194/gmd-16-2323-2023, 2023
Short summary
Short summary
We developed a new component within an atmospheric chemistry model to better simulate plant ecophysiological processes relevant for ozone air quality. We showed that it reduces simulated biases in plant uptake of ozone in prior models. The new model enables us to explore how future climatic changes affect air quality via affecting plants, examine ozone–vegetation interactions and feedbacks, and evaluate the impacts of changing atmospheric chemistry and climate on vegetation productivity.
Matti Kämäräinen, Juha-Pekka Tuovinen, Markku Kulmala, Ivan Mammarella, Juha Aalto, Henriikka Vekuri, Annalea Lohila, and Anna Lintunen
Biogeosciences, 20, 897–909, https://doi.org/10.5194/bg-20-897-2023, https://doi.org/10.5194/bg-20-897-2023, 2023
Short summary
Short summary
In this study, we introduce a new method for modeling the exchange of carbon between the atmosphere and a study site located in a boreal forest in southern Finland. Our method yields more accurate results than previous approaches in this context. Accurately estimating carbon exchange is crucial for gaining a better understanding of the role of forests in regulating atmospheric carbon and addressing climate change.
Kim A. P. Faassen, Linh N. T. Nguyen, Eadin R. Broekema, Bert A. M. Kers, Ivan Mammarella, Timo Vesala, Penelope A. Pickers, Andrew C. Manning, Jordi Vilà-Guerau de Arellano, Harro A. J. Meijer, Wouter Peters, and Ingrid T. Luijkx
Atmos. Chem. Phys., 23, 851–876, https://doi.org/10.5194/acp-23-851-2023, https://doi.org/10.5194/acp-23-851-2023, 2023
Short summary
Short summary
The exchange ratio (ER) between atmospheric O2 and CO2 provides a useful tracer for separately estimating photosynthesis and respiration processes in the forest carbon balance. This is highly relevant to better understand the expected biosphere sink, which determines future atmospheric CO2 levels. We therefore measured O2, CO2, and their ER above a boreal forest in Finland and investigated their diurnal behaviour for a representative day, and we show the most suitable way to determine the ER.
Luke D. Schiferl, Jennifer D. Watts, Erik J. L. Larson, Kyle A. Arndt, Sébastien C. Biraud, Eugénie S. Euskirchen, Jordan P. Goodrich, John M. Henderson, Aram Kalhori, Kathryn McKain, Marikate E. Mountain, J. William Munger, Walter C. Oechel, Colm Sweeney, Yonghong Yi, Donatella Zona, and Róisín Commane
Biogeosciences, 19, 5953–5972, https://doi.org/10.5194/bg-19-5953-2022, https://doi.org/10.5194/bg-19-5953-2022, 2022
Short summary
Short summary
As the Arctic rapidly warms, vast stores of thawing permafrost could release carbon dioxide (CO2) into the atmosphere. We combined observations of atmospheric CO2 concentrations from aircraft and a tower with observed CO2 fluxes from tundra ecosystems and found that the Alaskan North Slope in not a consistent source nor sink of CO2. Our study shows the importance of using both site-level and atmospheric measurements to constrain regional net CO2 fluxes and improve biogenic processes in models.
Rebecca A. Wernis, Nathan M. Kreisberg, Robert J. Weber, Greg T. Drozd, and Allen H. Goldstein
Atmos. Chem. Phys., 22, 14987–15019, https://doi.org/10.5194/acp-22-14987-2022, https://doi.org/10.5194/acp-22-14987-2022, 2022
Short summary
Short summary
We measured volatile and intermediate-volatility gases and semivolatile gas- and particle-phase compounds in the atmosphere during an 11 d period in a Bay Area suburb. We separated compounds based on variability in time to arrive at 13 distinct sources. Some compounds emitted from plants are found in greater quantities as fragrance compounds in consumer products. The wide volatility range of these measurements enables the construction of more complete source profiles.
William F. Swanson, Chris D. Holmes, William R. Simpson, Kaitlyn Confer, Louis Marelle, Jennie L. Thomas, Lyatt Jaeglé, Becky Alexander, Shuting Zhai, Qianjie Chen, Xuan Wang, and Tomás Sherwen
Atmos. Chem. Phys., 22, 14467–14488, https://doi.org/10.5194/acp-22-14467-2022, https://doi.org/10.5194/acp-22-14467-2022, 2022
Short summary
Short summary
Radical bromine molecules are seen at higher concentrations during the Arctic spring. We use the global model GEOS-Chem to test whether snowpack and wind-blown snow sources can explain high bromine concentrations. We run this model for the entire year of 2015 and compare results to observations of bromine from floating platforms on the Arctic Ocean and at Utqiaġvik. We find that the model performs best when both sources are enabled but may overestimate bromine production in summer and fall.
Kukka-Maaria Kohonen, Roderick Dewar, Gianluca Tramontana, Aleksanteri Mauranen, Pasi Kolari, Linda M. J. Kooijmans, Dario Papale, Timo Vesala, and Ivan Mammarella
Biogeosciences, 19, 4067–4088, https://doi.org/10.5194/bg-19-4067-2022, https://doi.org/10.5194/bg-19-4067-2022, 2022
Short summary
Short summary
Four different methods for quantifying photosynthesis (GPP) at ecosystem scale were tested, of which two are based on carbon dioxide (CO2) and two on carbonyl sulfide (COS) flux measurements. CO2-based methods are traditional partitioning, and a new method uses machine learning. We introduce a novel method for calculating GPP from COS fluxes, with potentially better applicability than the former methods. Both COS-based methods gave on average higher GPP estimates than the CO2-based estimates.
Ilann Bourgeois, Jeff Peischl, J. Andrew Neuman, Steven S. Brown, Hannah M. Allen, Pedro Campuzano-Jost, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Jessica B. Gilman, Georgios I. Gkatzelis, Hongyu Guo, Hannah A. Halliday, Thomas F. Hanisco, Christopher D. Holmes, L. Gregory Huey, Jose L. Jimenez, Aaron D. Lamplugh, Young Ro Lee, Jakob Lindaas, Richard H. Moore, Benjamin A. Nault, John B. Nowak, Demetrios Pagonis, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Vanessa Selimovic, Jason M. St. Clair, David Tanner, Krystal T. Vasquez, Patrick R. Veres, Carsten Warneke, Paul O. Wennberg, Rebecca A. Washenfelder, Elizabeth B. Wiggins, Caroline C. Womack, Lu Xu, Kyle J. Zarzana, and Thomas B. Ryerson
Atmos. Meas. Tech., 15, 4901–4930, https://doi.org/10.5194/amt-15-4901-2022, https://doi.org/10.5194/amt-15-4901-2022, 2022
Short summary
Short summary
Understanding fire emission impacts on the atmosphere is key to effective air quality management and requires accurate measurements. We present a comparison of airborne measurements of key atmospheric species in ambient air and in fire smoke. We show that most instruments performed within instrument uncertainties. In some cases, further work is needed to fully characterize instrument performance. Comparing independent measurements using different techniques is important to assess their accuracy.
Yutong Liang, Christos Stamatis, Edward C. Fortner, Rebecca A. Wernis, Paul Van Rooy, Francesca Majluf, Tara I. Yacovitch, Conner Daube, Scott C. Herndon, Nathan M. Kreisberg, Kelley C. Barsanti, and Allen H. Goldstein
Atmos. Chem. Phys., 22, 9877–9893, https://doi.org/10.5194/acp-22-9877-2022, https://doi.org/10.5194/acp-22-9877-2022, 2022
Short summary
Short summary
This article reports the measurements of organic compounds emitted from western US wildfires. We identified and quantified 240 particle-phase compounds and 72 gas-phase compounds emitted in wildfire and related the emissions to the modified combustion efficiency. Higher emissions of diterpenoids and monoterpenes were observed, likely due to distillation from unburned heated vegetation. Our results can benefit future source apportionment and modeling studies as well as exposure assessments.
Christopher D. Holmes
Atmos. Chem. Phys., 22, 9011–9015, https://doi.org/10.5194/acp-22-9011-2022, https://doi.org/10.5194/acp-22-9011-2022, 2022
Short summary
Short summary
Cloud water and ice enable reactions that lead to acid rain and alter atmospheric oxidants, among other impacts. This work develops and evaluates an efficient method of simulating cloud chemistry within global and regional atmospheric models in order to better understand the role of clouds in atmospheric chemistry.
Emily B. Franklin, Lindsay D. Yee, Bernard Aumont, Robert J. Weber, Paul Grigas, and Allen H. Goldstein
Atmos. Meas. Tech., 15, 3779–3803, https://doi.org/10.5194/amt-15-3779-2022, https://doi.org/10.5194/amt-15-3779-2022, 2022
Short summary
Short summary
The composition of atmospheric aerosols are extremely complex, containing hundreds of thousands of estimated individual compounds. The majority of these compounds have never been catalogued in widely used databases, making them extremely difficult for atmospheric chemists to identify and analyze. In this work, we present Ch3MS-RF, a machine-learning-based model to enable characterization of complex mixtures and prediction of structure-specific properties of unidentifiable organic compounds.
Joonatan Ala-Könni, Kukka-Maaria Kohonen, Matti Leppäranta, and Ivan Mammarella
Geosci. Model Dev., 15, 4739–4755, https://doi.org/10.5194/gmd-15-4739-2022, https://doi.org/10.5194/gmd-15-4739-2022, 2022
Short summary
Short summary
Properties of seasonally ice-covered lakes are not currently sufficiently included in global climate models. To fill this gap, this study evaluates three models that could be used to quantify the amount of heat that moves from and into the lake by the air above it and through evaporation of the ice cover. The results show that the complex nature of the surrounding environment as well as difficulties in accurately measuring the surface temperature of ice introduce errors to these models.
Malgorzata Golub, Wim Thiery, Rafael Marcé, Don Pierson, Inne Vanderkelen, Daniel Mercado-Bettin, R. Iestyn Woolway, Luke Grant, Eleanor Jennings, Benjamin M. Kraemer, Jacob Schewe, Fang Zhao, Katja Frieler, Matthias Mengel, Vasiliy Y. Bogomolov, Damien Bouffard, Marianne Côté, Raoul-Marie Couture, Andrey V. Debolskiy, Bram Droppers, Gideon Gal, Mingyang Guo, Annette B. G. Janssen, Georgiy Kirillin, Robert Ladwig, Madeline Magee, Tadhg Moore, Marjorie Perroud, Sebastiano Piccolroaz, Love Raaman Vinnaa, Martin Schmid, Tom Shatwell, Victor M. Stepanenko, Zeli Tan, Bronwyn Woodward, Huaxia Yao, Rita Adrian, Mathew Allan, Orlane Anneville, Lauri Arvola, Karen Atkins, Leon Boegman, Cayelan Carey, Kyle Christianson, Elvira de Eyto, Curtis DeGasperi, Maria Grechushnikova, Josef Hejzlar, Klaus Joehnk, Ian D. Jones, Alo Laas, Eleanor B. Mackay, Ivan Mammarella, Hampus Markensten, Chris McBride, Deniz Özkundakci, Miguel Potes, Karsten Rinke, Dale Robertson, James A. Rusak, Rui Salgado, Leon van der Linden, Piet Verburg, Danielle Wain, Nicole K. Ward, Sabine Wollrab, and Galina Zdorovennova
Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, https://doi.org/10.5194/gmd-15-4597-2022, 2022
Short summary
Short summary
Lakes and reservoirs are warming across the globe. To better understand how lakes are changing and to project their future behavior amidst various sources of uncertainty, simulations with a range of lake models are required. This in turn requires international coordination across different lake modelling teams worldwide. Here we present a protocol for and results from coordinated simulations of climate change impacts on lakes worldwide.
Jarmo Mäkelä, Laila Melkas, Ivan Mammarella, Tuomo Nieminen, Suyog Chandramouli, Rafael Savvides, and Kai Puolamäki
Biogeosciences, 19, 2095–2099, https://doi.org/10.5194/bg-19-2095-2022, https://doi.org/10.5194/bg-19-2095-2022, 2022
Short summary
Short summary
Causal structure discovery algorithms have been making headway into Earth system sciences, and they can be used to increase our understanding on biosphere–atmosphere interactions. In this paper we present a procedure on how to utilize prior knowledge of the domain experts together with these algorithms in order to find more robust causal structure models. We also demonstrate how to avoid pitfalls such as over-fitting and concept drift during this process.
Andrew J. Lindsay, Daniel C. Anderson, Rebecca A. Wernis, Yutong Liang, Allen H. Goldstein, Scott C. Herndon, Joseph R. Roscioli, Christoph Dyroff, Ed C. Fortner, Philip L. Croteau, Francesca Majluf, Jordan E. Krechmer, Tara I. Yacovitch, Walter B. Knighton, and Ezra C. Wood
Atmos. Chem. Phys., 22, 4909–4928, https://doi.org/10.5194/acp-22-4909-2022, https://doi.org/10.5194/acp-22-4909-2022, 2022
Short summary
Short summary
Wildfire smoke dramatically impacts air quality and often has elevated concentrations of ozone. We present measurements of ozone and its precursors at a rural site periodically impacted by wildfire smoke. Measurements of total peroxy radicals, key ozone precursors that have been studied little within wildfires, compare well with chemical box model predictions. Our results indicate no serious issues with using current chemistry mechanisms to model chemistry in aged wildfire plumes.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Shihan Sun, Amos P. K. Tai, David H. Y. Yung, Anthony Y. H. Wong, Jason A. Ducker, and Christopher D. Holmes
Biogeosciences, 19, 1753–1776, https://doi.org/10.5194/bg-19-1753-2022, https://doi.org/10.5194/bg-19-1753-2022, 2022
Short summary
Short summary
We developed and used a terrestrial biosphere model to compare and evaluate widely used empirical dry deposition schemes with different stomatal approaches and found that using photosynthesis-based stomatal approaches can reduce biases in modeled dry deposition velocities in current chemical transport models. Our study shows systematic errors in current dry deposition schemes and the importance of representing plant ecophysiological processes in models under a changing climate.
Timo Vesala, Kukka-Maaria Kohonen, Linda M. J. Kooijmans, Arnaud P. Praplan, Lenka Foltýnová, Pasi Kolari, Markku Kulmala, Jaana Bäck, David Nelson, Dan Yakir, Mark Zahniser, and Ivan Mammarella
Atmos. Chem. Phys., 22, 2569–2584, https://doi.org/10.5194/acp-22-2569-2022, https://doi.org/10.5194/acp-22-2569-2022, 2022
Short summary
Short summary
Carbonyl sulfide (COS) provides new insights into carbon cycle research. We present an easy-to-use flux parameterization and the longest existing time series of forest–atmosphere COS exchange measurements, which allow us to study both seasonal and interannual variability. We observed only uptake of COS by the forest on an annual basis, with 37 % variability between years. Upscaling the boreal COS uptake using a biosphere model indicates a significant missing COS sink at high latitudes.
Delaney B. Kilgour, Gordon A. Novak, Jon S. Sauer, Alexia N. Moore, Julie Dinasquet, Sarah Amiri, Emily B. Franklin, Kathryn Mayer, Margaux Winter, Clare K. Morris, Tyler Price, Francesca Malfatti, Daniel R. Crocker, Christopher Lee, Christopher D. Cappa, Allen H. Goldstein, Kimberly A. Prather, and Timothy H. Bertram
Atmos. Chem. Phys., 22, 1601–1613, https://doi.org/10.5194/acp-22-1601-2022, https://doi.org/10.5194/acp-22-1601-2022, 2022
Short summary
Short summary
We report measurements of gas-phase volatile organosulfur molecules made during a mesocosm phytoplankton bloom experiment. Dimethyl sulfide (DMS), methanethiol (MeSH), and benzothiazole accounted for on average over 90 % of total gas-phase sulfur emissions. This work focuses on factors controlling the production and emission of DMS and MeSH and the role of non-DMS molecules (such as MeSH and benzothiazole) in secondary sulfate formation in coastal marine environments.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Linda M. J. Kooijmans, Ara Cho, Jin Ma, Aleya Kaushik, Katherine D. Haynes, Ian Baker, Ingrid T. Luijkx, Mathijs Groenink, Wouter Peters, John B. Miller, Joseph A. Berry, Jerome Ogée, Laura K. Meredith, Wu Sun, Kukka-Maaria Kohonen, Timo Vesala, Ivan Mammarella, Huilin Chen, Felix M. Spielmann, Georg Wohlfahrt, Max Berkelhammer, Mary E. Whelan, Kadmiel Maseyk, Ulli Seibt, Roisin Commane, Richard Wehr, and Maarten Krol
Biogeosciences, 18, 6547–6565, https://doi.org/10.5194/bg-18-6547-2021, https://doi.org/10.5194/bg-18-6547-2021, 2021
Short summary
Short summary
The gas carbonyl sulfide (COS) can be used to estimate photosynthesis. To adopt this approach on regional and global scales, we need biosphere models that can simulate COS exchange. So far, such models have not been evaluated against observations. We evaluate the COS biosphere exchange of the SiB4 model against COS flux observations. We find that the model is capable of simulating key processes in COS biosphere exchange. Still, we give recommendations for further improvement of the model.
Jin Liao, Glenn M. Wolfe, Reem A. Hannun, Jason M. St. Clair, Thomas F. Hanisco, Jessica B. Gilman, Aaron Lamplugh, Vanessa Selimovic, Glenn S. Diskin, John B. Nowak, Hannah S. Halliday, Joshua P. DiGangi, Samuel R. Hall, Kirk Ullmann, Christopher D. Holmes, Charles H. Fite, Anxhelo Agastra, Thomas B. Ryerson, Jeff Peischl, Ilann Bourgeois, Carsten Warneke, Matthew M. Coggon, Georgios I. Gkatzelis, Kanako Sekimoto, Alan Fried, Dirk Richter, Petter Weibring, Eric C. Apel, Rebecca S. Hornbrook, Steven S. Brown, Caroline C. Womack, Michael A. Robinson, Rebecca A. Washenfelder, Patrick R. Veres, and J. Andrew Neuman
Atmos. Chem. Phys., 21, 18319–18331, https://doi.org/10.5194/acp-21-18319-2021, https://doi.org/10.5194/acp-21-18319-2021, 2021
Short summary
Short summary
Formaldehyde (HCHO) is an important oxidant precursor and affects the formation of O3 and other secondary pollutants in wildfire plumes. We disentangle the processes controlling HCHO evolution from wildfire plumes sampled by NASA DC-8 during FIREX-AQ. We find that OH abundance rather than normalized OH reactivity is the main driver of fire-to-fire variability in HCHO secondary production and estimate an effective HCHO yield per volatile organic compound molecule oxidized in wildfire plumes.
Auke J. Visser, Laurens N. Ganzeveld, Ignacio Goded, Maarten C. Krol, Ivan Mammarella, Giovanni Manca, and K. Folkert Boersma
Atmos. Chem. Phys., 21, 18393–18411, https://doi.org/10.5194/acp-21-18393-2021, https://doi.org/10.5194/acp-21-18393-2021, 2021
Short summary
Short summary
Dry deposition is an important sink for tropospheric ozone that affects ecosystem carbon uptake, but process understanding remains incomplete. We apply a common deposition representation in atmospheric chemistry models and a multi-layer canopy model to multi-year ozone deposition observations. The multi-layer canopy model performs better on diurnal timescales compared to the common approach, leading to a substantially improved simulation of ozone deposition and vegetation ozone impact metrics.
Nicole Jacobs, William R. Simpson, Kelly A. Graham, Christopher Holmes, Frank Hase, Thomas Blumenstock, Qiansi Tu, Matthias Frey, Manvendra K. Dubey, Harrison A. Parker, Debra Wunch, Rigel Kivi, Pauli Heikkinen, Justus Notholt, Christof Petri, and Thorsten Warneke
Atmos. Chem. Phys., 21, 16661–16687, https://doi.org/10.5194/acp-21-16661-2021, https://doi.org/10.5194/acp-21-16661-2021, 2021
Short summary
Short summary
Spatial patterns of carbon dioxide seasonal cycle amplitude and summer drawdown timing derived from the OCO-2 satellite over northern high latitudes agree well with corresponding estimates from two models. The Asian boreal forest is anomalous with the largest amplitude and earliest seasonal drawdown. Modeled land contact tracers suggest that accumulated CO2 exchanges during atmospheric transport play a major role in shaping carbon dioxide seasonality in northern high-latitude regions.
Zachary C. J. Decker, Michael A. Robinson, Kelley C. Barsanti, Ilann Bourgeois, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Frank M. Flocke, Alessandro Franchin, Carley D. Fredrickson, Georgios I. Gkatzelis, Samuel R. Hall, Hannah Halliday, Christopher D. Holmes, L. Gregory Huey, Young Ro Lee, Jakob Lindaas, Ann M. Middlebrook, Denise D. Montzka, Richard Moore, J. Andrew Neuman, John B. Nowak, Brett B. Palm, Jeff Peischl, Felix Piel, Pamela S. Rickly, Andrew W. Rollins, Thomas B. Ryerson, Rebecca H. Schwantes, Kanako Sekimoto, Lee Thornhill, Joel A. Thornton, Geoffrey S. Tyndall, Kirk Ullmann, Paul Van Rooy, Patrick R. Veres, Carsten Warneke, Rebecca A. Washenfelder, Andrew J. Weinheimer, Elizabeth Wiggins, Edward Winstead, Armin Wisthaler, Caroline Womack, and Steven S. Brown
Atmos. Chem. Phys., 21, 16293–16317, https://doi.org/10.5194/acp-21-16293-2021, https://doi.org/10.5194/acp-21-16293-2021, 2021
Short summary
Short summary
To understand air quality impacts from wildfires, we need an accurate picture of how wildfire smoke changes chemically both day and night as sunlight changes the chemistry of smoke. We present a chemical analysis of wildfire smoke as it changes from midday through the night. We use aircraft observations from the FIREX-AQ field campaign with a chemical box model. We find that even under sunlight typical
nighttimechemistry thrives and controls the fate of key smoke plume chemical processes.
Stefano Galmarini, Paul Makar, Olivia E. Clifton, Christian Hogrefe, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Tim Butler, Jason Ducker, Johannes Flemming, Alma Hodzic, Christopher D. Holmes, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Juan Luis Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Sam Silva, and Ralf Wolke
Atmos. Chem. Phys., 21, 15663–15697, https://doi.org/10.5194/acp-21-15663-2021, https://doi.org/10.5194/acp-21-15663-2021, 2021
Short summary
Short summary
This technical note presents the research protocols for phase 4 of the Air Quality Model Evaluation International Initiative (AQMEII4). This initiative has three goals: (i) to define the state of wet and dry deposition in regional models, (ii) to evaluate how dry deposition influences air concentration and flux predictions, and (iii) to identify the causes for prediction differences. The evaluation compares LULC-specific dry deposition and effective conductances and fluxes.
Rebecca A. Wernis, Nathan M. Kreisberg, Robert J. Weber, Yutong Liang, John Jayne, Susanne Hering, and Allen H. Goldstein
Atmos. Meas. Tech., 14, 6533–6550, https://doi.org/10.5194/amt-14-6533-2021, https://doi.org/10.5194/amt-14-6533-2021, 2021
Short summary
Short summary
cTAG is a new scientific instrument that measures concentrations of organic chemicals in the atmosphere. cTAG is the first instrument capable of measuring small, light chemicals as well as heavier chemicals and everything in between on a single detector, every hour. In this work we explain how cTAG works and some of the tests we performed to verify that it works properly and reliably. We also present measurements of alkanes that suggest they have three dominant sources in a Bay Area suburb.
Xuan Wang, Daniel J. Jacob, William Downs, Shuting Zhai, Lei Zhu, Viral Shah, Christopher D. Holmes, Tomás Sherwen, Becky Alexander, Mathew J. Evans, Sebastian D. Eastham, J. Andrew Neuman, Patrick R. Veres, Theodore K. Koenig, Rainer Volkamer, L. Gregory Huey, Thomas J. Bannan, Carl J. Percival, Ben H. Lee, and Joel A. Thornton
Atmos. Chem. Phys., 21, 13973–13996, https://doi.org/10.5194/acp-21-13973-2021, https://doi.org/10.5194/acp-21-13973-2021, 2021
Short summary
Short summary
Halogen radicals have a broad range of implications for tropospheric chemistry, air quality, and climate. We present a new mechanistic description and comprehensive simulation of tropospheric halogens in a global 3-D model and compare the model results with surface and aircraft measurements. We find that halogen chemistry decreases the global tropospheric burden of ozone by 11 %, NOx by 6 %, and OH by 4 %.
Alex Resovsky, Michel Ramonet, Leonard Rivier, Jerome Tarniewicz, Philippe Ciais, Martin Steinbacher, Ivan Mammarella, Meelis Mölder, Michal Heliasz, Dagmar Kubistin, Matthias Lindauer, Jennifer Müller-Williams, Sebastien Conil, and Richard Engelen
Atmos. Meas. Tech., 14, 6119–6135, https://doi.org/10.5194/amt-14-6119-2021, https://doi.org/10.5194/amt-14-6119-2021, 2021
Short summary
Short summary
We present a technical description of a statistical methodology for extracting synoptic- and seasonal-length anomalies from greenhouse gas time series. The definition of what represents an anomalous signal is somewhat subjective, which we touch on throughout the paper. We show, however, that the method performs reasonably well in extracting portions of time series influenced by significant North Atlantic Oscillation weather episodes and continent-wide terrestrial biospheric aberrations.
Pavel Alekseychik, Aino Korrensalo, Ivan Mammarella, Samuli Launiainen, Eeva-Stiina Tuittila, Ilkka Korpela, and Timo Vesala
Biogeosciences, 18, 4681–4704, https://doi.org/10.5194/bg-18-4681-2021, https://doi.org/10.5194/bg-18-4681-2021, 2021
Short summary
Short summary
Bogs of northern Eurasia represent a major type of peatland ecosystem and contain vast amounts of carbon, but carbon balance monitoring studies on bogs are scarce. The current project explores 6 years of carbon balance data obtained using the state-of-the-art eddy-covariance technique at a Finnish bog Siikaneva. The results reveal relatively low interannual variability indicative of ecosystem resilience to both cool and hot summers and provide new insights into the seasonal course of C fluxes.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Toprak Aslan, Olli Peltola, Andreas Ibrom, Eiko Nemitz, Üllar Rannik, and Ivan Mammarella
Atmos. Meas. Tech., 14, 5089–5106, https://doi.org/10.5194/amt-14-5089-2021, https://doi.org/10.5194/amt-14-5089-2021, 2021
Short summary
Short summary
Vertical turbulent fluxes of gases measured by the eddy covariance (EC) technique are subject to high-frequency losses. There are different methods used to describe this low-pass filtering effect and to correct the measured fluxes. In this study, we analysed the systematic uncertainty related to this correction for various attenuation and signal-to-noise ratios. A new and robust transfer function method is finally proposed.
Olli Peltola, Toprak Aslan, Andreas Ibrom, Eiko Nemitz, Üllar Rannik, and Ivan Mammarella
Atmos. Meas. Tech., 14, 5071–5088, https://doi.org/10.5194/amt-14-5071-2021, https://doi.org/10.5194/amt-14-5071-2021, 2021
Short summary
Short summary
Gas fluxes measured by the eddy covariance (EC) technique are subject to filtering due to non-ideal instrumentation. For linear first-order systems this filtering causes also a time lag between vertical wind speed and gas signal which is additional to the gas travel time in the sampling line. The effect of this additional time lag on EC fluxes is ignored in current EC data processing routines. Here we show that this oversight biases EC fluxes and hence propose an approach to rectify this bias.
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021, https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary
Short summary
We evaluated 10 representations of soil moisture stress in the JULES land surface model against site observations of GPP and latent heat flux. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES. In addition, using soil matric potential presents the opportunity to include parameters specific to plant functional type to further improve modeled fluxes.
Yutong Liang, Coty N. Jen, Robert J. Weber, Pawel K. Misztal, and Allen H. Goldstein
Atmos. Chem. Phys., 21, 5719–5737, https://doi.org/10.5194/acp-21-5719-2021, https://doi.org/10.5194/acp-21-5719-2021, 2021
Short summary
Short summary
This article reports the molecular composition of smoke particles people in SF Bay Area were exposed to during northern California wildfires in Oct. 2017. Major components are sugars, acids, aromatics, and terpenoids. These observations can be used to better understand health impacts of smoke exposure. Tracer compounds indicate which fuels burned, including diterpenoids for softwood and syringyls for hardwood. A statistical analysis reveals a group of secondary compounds formed in daytime aging.
Jan Pisek, Angela Erb, Lauri Korhonen, Tobias Biermann, Arnaud Carrara, Edoardo Cremonese, Matthias Cuntz, Silvano Fares, Giacomo Gerosa, Thomas Grünwald, Niklas Hase, Michal Heliasz, Andreas Ibrom, Alexander Knohl, Johannes Kobler, Bart Kruijt, Holger Lange, Leena Leppänen, Jean-Marc Limousin, Francisco Ramon Lopez Serrano, Denis Loustau, Petr Lukeš, Lars Lundin, Riccardo Marzuoli, Meelis Mölder, Leonardo Montagnani, Johan Neirynck, Matthias Peichl, Corinna Rebmann, Eva Rubio, Margarida Santos-Reis, Crystal Schaaf, Marius Schmidt, Guillaume Simioni, Kamel Soudani, and Caroline Vincke
Biogeosciences, 18, 621–635, https://doi.org/10.5194/bg-18-621-2021, https://doi.org/10.5194/bg-18-621-2021, 2021
Short summary
Short summary
Understory vegetation is the most diverse, least understood component of forests worldwide. Understory communities are important drivers of overstory succession and nutrient cycling. Multi-angle remote sensing enables us to describe surface properties by means that are not possible when using mono-angle data. Evaluated over an extensive set of forest ecosystem experimental sites in Europe, our reported method can deliver good retrievals, especially over different forest types with open canopies.
Tamara Emmerichs, Astrid Kerkweg, Huug Ouwersloot, Silvano Fares, Ivan Mammarella, and Domenico Taraborrelli
Geosci. Model Dev., 14, 495–519, https://doi.org/10.5194/gmd-14-495-2021, https://doi.org/10.5194/gmd-14-495-2021, 2021
Short summary
Short summary
Dry deposition to vegetation is a major sink of ground-level ozone. Its parameterization in atmospheric chemistry models represents a significant source of uncertainty for global tropospheric ozone. We extended the current model parameterization with a relevant pathway and important meteorological adjustment factors. The comparison with measurements shows that this enables a more realistic model representation of ozone dry deposition velocity. Globally, annual dry deposition loss increases.
Camille Yver-Kwok, Carole Philippon, Peter Bergamaschi, Tobias Biermann, Francescopiero Calzolari, Huilin Chen, Sebastien Conil, Paolo Cristofanelli, Marc Delmotte, Juha Hatakka, Michal Heliasz, Ove Hermansen, Kateřina Komínková, Dagmar Kubistin, Nicolas Kumps, Olivier Laurent, Tuomas Laurila, Irene Lehner, Janne Levula, Matthias Lindauer, Morgan Lopez, Ivan Mammarella, Giovanni Manca, Per Marklund, Jean-Marc Metzger, Meelis Mölder, Stephen M. Platt, Michel Ramonet, Leonard Rivier, Bert Scheeren, Mahesh Kumar Sha, Paul Smith, Martin Steinbacher, Gabriela Vítková, and Simon Wyss
Atmos. Meas. Tech., 14, 89–116, https://doi.org/10.5194/amt-14-89-2021, https://doi.org/10.5194/amt-14-89-2021, 2021
Short summary
Short summary
The Integrated Carbon Observation System (ICOS) is a pan-European research infrastructure which provides harmonized and high-precision scientific data on the carbon cycle and the greenhouse gas (GHG) budget. All stations have to undergo a rigorous assessment before being labeled, i.e., receiving approval to join the network. In this paper, we present the labeling process for the ICOS atmospheric network through the 23 stations that were labeled between November 2017 and November 2019.
Yuan Zhang, Ana Bastos, Fabienne Maignan, Daniel Goll, Olivier Boucher, Laurent Li, Alessandro Cescatti, Nicolas Vuichard, Xiuzhi Chen, Christof Ammann, M. Altaf Arain, T. Andrew Black, Bogdan Chojnicki, Tomomichi Kato, Ivan Mammarella, Leonardo Montagnani, Olivier Roupsard, Maria J. Sanz, Lukas Siebicke, Marek Urbaniak, Francesco Primo Vaccari, Georg Wohlfahrt, Will Woodgate, and Philippe Ciais
Geosci. Model Dev., 13, 5401–5423, https://doi.org/10.5194/gmd-13-5401-2020, https://doi.org/10.5194/gmd-13-5401-2020, 2020
Short summary
Short summary
We improved the ORCHIDEE LSM by distinguishing diffuse and direct light in canopy and evaluated the new model with observations from 159 sites. Compared with the old model, the new model has better sunny GPP and reproduced the diffuse light fertilization effect observed at flux sites. Our simulations also indicate different mechanisms causing the observed GPP enhancement under cloudy conditions at different times. The new model has the potential to study large-scale impacts of aerosol changes.
Kukka-Maaria Kohonen, Pasi Kolari, Linda M. J. Kooijmans, Huilin Chen, Ulli Seibt, Wu Sun, and Ivan Mammarella
Atmos. Meas. Tech., 13, 3957–3975, https://doi.org/10.5194/amt-13-3957-2020, https://doi.org/10.5194/amt-13-3957-2020, 2020
Short summary
Short summary
Biosphere–atmosphere gas exchange (flux) measurements of carbonyl sulfide (COS) are becoming popular for estimating biospheric photosynthesis. To compare COS flux measurements across different measurement sites, we need standardized protocols for data processing. We analyze how various data processing steps affect the calculated COS flux and how they differ from carbon dioxide (CO2) flux processing steps, and we aim to settle on a set of recommended protocols for COS flux calculation.
Ryan Schmedding, Quazi Z. Rasool, Yue Zhang, Havala O. T. Pye, Haofei Zhang, Yuzhi Chen, Jason D. Surratt, Felipe D. Lopez-Hilfiker, Joel A. Thornton, Allen H. Goldstein, and William Vizuete
Atmos. Chem. Phys., 20, 8201–8225, https://doi.org/10.5194/acp-20-8201-2020, https://doi.org/10.5194/acp-20-8201-2020, 2020
Short summary
Short summary
Accurate model prediction of aerosol concentrations is a known challenge. It is assumed in many modeling systems that aerosols are in a homogeneously mixed phase state. It has been observed that aerosols do phase separate and can form a highly viscous organic shell with an aqueous core impacting the formation processes of aerosols. This work is a model implementation to determine an aerosol's phase state using glass transition temperature and aerosol composition.
Xuefei Li, Outi Wahlroos, Sami Haapanala, Jukka Pumpanen, Harri Vasander, Anne Ojala, Timo Vesala, and Ivan Mammarella
Biogeosciences, 17, 3409–3425, https://doi.org/10.5194/bg-17-3409-2020, https://doi.org/10.5194/bg-17-3409-2020, 2020
Short summary
Short summary
We measured CO2 and CH4 fluxes and quantified the global warming potential of different surface areas in a recently created urban wetland in Southern Finland. The ecosystem has a small net climate warming effect which was mainly contributed by the open-water areas. Our results suggest that limiting open-water areas and setting a design preference for areas of emergent vegetation in the establishment of urban wetlands can be a beneficial practice when considering solely the climate impact.
Christopher P. O. Reyer, Ramiro Silveyra Gonzalez, Klara Dolos, Florian Hartig, Ylva Hauf, Matthias Noack, Petra Lasch-Born, Thomas Rötzer, Hans Pretzsch, Henning Meesenburg, Stefan Fleck, Markus Wagner, Andreas Bolte, Tanja G. M. Sanders, Pasi Kolari, Annikki Mäkelä, Timo Vesala, Ivan Mammarella, Jukka Pumpanen, Alessio Collalti, Carlo Trotta, Giorgio Matteucci, Ettore D'Andrea, Lenka Foltýnová, Jan Krejza, Andreas Ibrom, Kim Pilegaard, Denis Loustau, Jean-Marc Bonnefond, Paul Berbigier, Delphine Picart, Sébastien Lafont, Michael Dietze, David Cameron, Massimo Vieno, Hanqin Tian, Alicia Palacios-Orueta, Victor Cicuendez, Laura Recuero, Klaus Wiese, Matthias Büchner, Stefan Lange, Jan Volkholz, Hyungjun Kim, Joanna A. Horemans, Friedrich Bohn, Jörg Steinkamp, Alexander Chikalanov, Graham P. Weedon, Justin Sheffield, Flurin Babst, Iliusi Vega del Valle, Felicitas Suckow, Simon Martel, Mats Mahnken, Martin Gutsch, and Katja Frieler
Earth Syst. Sci. Data, 12, 1295–1320, https://doi.org/10.5194/essd-12-1295-2020, https://doi.org/10.5194/essd-12-1295-2020, 2020
Short summary
Short summary
Process-based vegetation models are widely used to predict local and global ecosystem dynamics and climate change impacts. Due to their complexity, they require careful parameterization and evaluation to ensure that projections are accurate and reliable. The PROFOUND Database provides a wide range of empirical data to calibrate and evaluate vegetation models that simulate climate impacts at the forest stand scale to support systematic model intercomparisons and model development in Europe.
Becky Alexander, Tomás Sherwen, Christopher D. Holmes, Jenny A. Fisher, Qianjie Chen, Mat J. Evans, and Prasad Kasibhatla
Atmos. Chem. Phys., 20, 3859–3877, https://doi.org/10.5194/acp-20-3859-2020, https://doi.org/10.5194/acp-20-3859-2020, 2020
Short summary
Short summary
Nitrogen oxides are important for the formation of tropospheric oxidants and are removed from the atmosphere mainly through the formation of nitrate. We compare observations of the oxygen isotopes of nitrate with a global model to test our understanding of the chemistry nitrate formation. We use the model to quantify nitrate formation pathways in the atmosphere and identify key uncertainties and their relevance for the oxidation capacity of the atmosphere.
Archana Dayalu, J. William Munger, Yuxuan Wang, Steven C. Wofsy, Yu Zhao, Thomas Nehrkorn, Chris Nielsen, Michael B. McElroy, and Rachel Chang
Atmos. Chem. Phys., 20, 3569–3588, https://doi.org/10.5194/acp-20-3569-2020, https://doi.org/10.5194/acp-20-3569-2020, 2020
Short summary
Short summary
China has pledged to reduce carbon dioxide emissions per unit GDP by 60–65 % relative to 2005 levels, and to peak carbon emissions overall by 2030. Disagreement among available inventories of Chinese emissions makes it difficult for China to track progress toward its goals and evaluate the efficacy of regional control measures. This study uses a unique set of historical atmospheric observations for the key period from 2005 to 2009 to independently evaluate three different CO2 emission estimates.
Joseph R. Salazar, Benton T. Cartledge, John P. Haynes, Rachel York-Marini, Allen L. Robinson, Greg T. Drozd, Allen H. Goldstein, Sirine C. Fakra, and Brian J. Majestic
Atmos. Chem. Phys., 20, 1849–1860, https://doi.org/10.5194/acp-20-1849-2020, https://doi.org/10.5194/acp-20-1849-2020, 2020
Short summary
Short summary
The solubility of atmospheric iron is important in human health and environmental chemistry. To understand the origin of water-soluble iron in urban areas, tailpipe emissions were collected from 32 low-emitting vehicles, from which iron solubility averaged 30 % (0–82 %), more than 10 times the average in the Earth's crust. Water-soluble iron was independent of almost all exhaust components and of the iron phase in the particles but was correlated with specific exhaust-derived organic compounds.
Paul C. Stoy, Tarek S. El-Madany, Joshua B. Fisher, Pierre Gentine, Tobias Gerken, Stephen P. Good, Anne Klosterhalfen, Shuguang Liu, Diego G. Miralles, Oscar Perez-Priego, Angela J. Rigden, Todd H. Skaggs, Georg Wohlfahrt, Ray G. Anderson, A. Miriam J. Coenders-Gerrits, Martin Jung, Wouter H. Maes, Ivan Mammarella, Matthias Mauder, Mirco Migliavacca, Jacob A. Nelson, Rafael Poyatos, Markus Reichstein, Russell L. Scott, and Sebastian Wolf
Biogeosciences, 16, 3747–3775, https://doi.org/10.5194/bg-16-3747-2019, https://doi.org/10.5194/bg-16-3747-2019, 2019
Short summary
Short summary
Key findings are the nearly optimal response of T to atmospheric water vapor pressure deficits across methods and scales. Additionally, the notion that T / ET intermittently approaches 1, which is a basis for many partitioning methods, does not hold for certain methods and ecosystems. To better constrain estimates of E and T from combined ET measurements, we propose a combination of independent measurement techniques to better constrain E and T at the ecosystem scale.
Jarmo Mäkelä, Jürgen Knauer, Mika Aurela, Andrew Black, Martin Heimann, Hideki Kobayashi, Annalea Lohila, Ivan Mammarella, Hank Margolis, Tiina Markkanen, Jouni Susiluoto, Tea Thum, Toni Viskari, Sönke Zaehle, and Tuula Aalto
Geosci. Model Dev., 12, 4075–4098, https://doi.org/10.5194/gmd-12-4075-2019, https://doi.org/10.5194/gmd-12-4075-2019, 2019
Short summary
Short summary
We assess the differences of six stomatal conductance formulations, embedded into a land–vegetation model JSBACH, on 10 boreal coniferous evergreen forest sites. We calibrate the model parameters using all six functions in a multi-year experiment, as well as for a separate drought event at one of the sites, using the adaptive population importance sampler. The analysis reveals weaknesses in the stomatal conductance formulation-dependent model behaviour that we are able to partially amend.
Petri Kiuru, Anne Ojala, Ivan Mammarella, Jouni Heiskanen, Kukka-Maaria Erkkilä, Heli Miettinen, Timo Vesala, and Timo Huttula
Biogeosciences, 16, 3297–3317, https://doi.org/10.5194/bg-16-3297-2019, https://doi.org/10.5194/bg-16-3297-2019, 2019
Short summary
Short summary
Many boreal lakes emit the greenhouse gas carbon dioxide (CO2) to the atmosphere. We incorporated four different gas exchange models into a physico-biochemical lake model and studied their ability to simulate lake air–water CO2 fluxes. The inclusion of refined gas exchange models in lake models that simulate carbon cycling is important to assess lake carbon budgets. However, higher estimates for inorganic carbon sources in boreal lakes are needed to balance the CO2 losses to the atmosphere.
Olli Peltola, Timo Vesala, Yao Gao, Olle Räty, Pavel Alekseychik, Mika Aurela, Bogdan Chojnicki, Ankur R. Desai, Albertus J. Dolman, Eugenie S. Euskirchen, Thomas Friborg, Mathias Göckede, Manuel Helbig, Elyn Humphreys, Robert B. Jackson, Georg Jocher, Fortunat Joos, Janina Klatt, Sara H. Knox, Natalia Kowalska, Lars Kutzbach, Sebastian Lienert, Annalea Lohila, Ivan Mammarella, Daniel F. Nadeau, Mats B. Nilsson, Walter C. Oechel, Matthias Peichl, Thomas Pypker, William Quinton, Janne Rinne, Torsten Sachs, Mateusz Samson, Hans Peter Schmid, Oliver Sonnentag, Christian Wille, Donatella Zona, and Tuula Aalto
Earth Syst. Sci. Data, 11, 1263–1289, https://doi.org/10.5194/essd-11-1263-2019, https://doi.org/10.5194/essd-11-1263-2019, 2019
Short summary
Short summary
Here we develop a monthly gridded dataset of northern (> 45 N) wetland methane (CH4) emissions. The data product is derived using a random forest machine-learning technique and eddy covariance CH4 fluxes from 25 wetland sites. Annual CH4 emissions from these wetlands calculated from the derived data product are comparable to prior studies focusing on these areas. This product is an independent estimate of northern wetland CH4 emissions and hence could be used, e.g. for process model evaluation.
Mark O. Battle, J. William Munger, Margaret Conley, Eric Sofen, Rebecca Perry, Ryan Hart, Zane Davis, Jacob Scheckman, Jayme Woogerd, Karina Graeter, Samuel Seekins, Sasha David, and John Carpenter
Atmos. Chem. Phys., 19, 8687–8701, https://doi.org/10.5194/acp-19-8687-2019, https://doi.org/10.5194/acp-19-8687-2019, 2019
Short summary
Short summary
Predictions of global warming require predictions of how much CO2 will be taken up by the oceans, how much by land plants, and how much will stay in the atmosphere. Measurements of atmospheric oxygen (O2) help with these predictions if we also know the ratio of O2 release to CO2 uptake in land plants. We have measured this ratio in a midlatitude forest and find a lower value than the one in wide use. If truly applicable, our results call for a modest adjustment in the global carbon budget.
Suzane S. de Sá, Luciana V. Rizzo, Brett B. Palm, Pedro Campuzano-Jost, Douglas A. Day, Lindsay D. Yee, Rebecca Wernis, Gabriel Isaacman-VanWertz, Joel Brito, Samara Carbone, Yingjun J. Liu, Arthur Sedlacek, Stephen Springston, Allen H. Goldstein, Henrique M. J. Barbosa, M. Lizabeth Alexander, Paulo Artaxo, Jose L. Jimenez, and Scot T. Martin
Atmos. Chem. Phys., 19, 7973–8001, https://doi.org/10.5194/acp-19-7973-2019, https://doi.org/10.5194/acp-19-7973-2019, 2019
Short summary
Short summary
This study investigates the impacts of urban and fire emissions on the concentration, composition, and optical properties of submicron particulate matter (PM1) in central Amazonia during the dry season. Biomass-burning and urban emissions appeared to contribute at least 80 % of brown carbon absorption while accounting for 30 % to 40 % of the organic PM1 mass concentration. Only a fraction of the 9-fold increase in mass concentration relative to the wet season was due to biomass burning.
Elisa Männistö, Aino Korrensalo, Pavel Alekseychik, Ivan Mammarella, Olli Peltola, Timo Vesala, and Eeva-Stiina Tuittila
Biogeosciences, 16, 2409–2421, https://doi.org/10.5194/bg-16-2409-2019, https://doi.org/10.5194/bg-16-2409-2019, 2019
Short summary
Short summary
We studied methane emitted as episodic bubble release (ebullition) from water and bare peat surfaces of a boreal bog over three years. There was more ebullition from water than from bare peat surfaces, and it was controlled by peat temperature, water level, atmospheric pressure and the weekly temperature sum. However, the contribution of methane bubbles to the total ecosystem methane emission was small. This new information can be used to improve process models of peatland methane dynamics.
Shino Toma, Steve Bertman, Christopher Groff, Fulizi Xiong, Paul B. Shepson, Paul Romer, Kaitlin Duffey, Paul Wooldridge, Ronald Cohen, Karsten Baumann, Eric Edgerton, Abigail R. Koss, Joost de Gouw, Allen Goldstein, Weiwei Hu, and Jose L. Jimenez
Atmos. Chem. Phys., 19, 1867–1880, https://doi.org/10.5194/acp-19-1867-2019, https://doi.org/10.5194/acp-19-1867-2019, 2019
Short summary
Short summary
Acyl peroxy nitrates (APN) were measured near the ground in Alabama using GC in summer 2013 to study biosphere–atmosphere interactions. APN were lower than measured in the SE USA over the past 2 decades. Historical data showed APN in 2013 was limited by NOx and production was dominated by biogenic precursors more than in the past. Isoprene-derived MPAN correlated with isoprene hydroxynitrates as NOx-dependent products. MPAN varied with aerosol growth, but not with N-containing particles.
Shaojie Song, Meng Gao, Weiqi Xu, Yele Sun, Douglas R. Worsnop, John T. Jayne, Yuzhong Zhang, Lei Zhu, Mei Li, Zhen Zhou, Chunlei Cheng, Yibing Lv, Ying Wang, Wei Peng, Xiaobin Xu, Nan Lin, Yuxuan Wang, Shuxiao Wang, J. William Munger, Daniel J. Jacob, and Michael B. McElroy
Atmos. Chem. Phys., 19, 1357–1371, https://doi.org/10.5194/acp-19-1357-2019, https://doi.org/10.5194/acp-19-1357-2019, 2019
Short summary
Short summary
Chemistry responsible for sulfate production in northern China winter haze remains mysterious. We propose a potentially key pathway through the reaction of formaldehyde and sulfur dioxide that has not been accounted for in previous studies. The special atmospheric conditions favor the formation and existence of their complex, hydroxymethanesulfonate (HMS).
Coty N. Jen, Lindsay E. Hatch, Vanessa Selimovic, Robert J. Yokelson, Robert Weber, Arantza E. Fernandez, Nathan M. Kreisberg, Kelley C. Barsanti, and Allen H. Goldstein
Atmos. Chem. Phys., 19, 1013–1026, https://doi.org/10.5194/acp-19-1013-2019, https://doi.org/10.5194/acp-19-1013-2019, 2019
Short summary
Short summary
Wildfires in the western US are occurring more frequently and burning larger land areas. Smoke from these fires will play a greater role in regional air quality and atmospheric chemistry than in the past. To help fire and climate modelers and atmospheric experimentalists better understand how smoke impacts the environment, we have separated, identified, classified, and quantified the thousands of organic compounds found in smoke and related their amounts emitted to fire conditions.
Angelo Finco, Mhairi Coyle, Eiko Nemitz, Riccardo Marzuoli, Maria Chiesa, Benjamin Loubet, Silvano Fares, Eugenio Diaz-Pines, Rainer Gasche, and Giacomo Gerosa
Atmos. Chem. Phys., 18, 17945–17961, https://doi.org/10.5194/acp-18-17945-2018, https://doi.org/10.5194/acp-18-17945-2018, 2018
Short summary
Short summary
A 1-month field campaign of ozone (O3) flux measurements along a five-level vertical profile of a mature broadleaf forest highlighted that the biosphere–atmosphere exchange of this pollutant is modulated by complex diel dynamics occurring within and below the canopy. The canopy removed nearly 80 % of the O3 deposited to the forest; only a minor part was removed by the soil and the understorey (2 %), while the remaining 18.2 % was removed by chemical reactions with NO mostly emitted from soil.
Ekaterina Ezhova, Ilona Ylivinkka, Joel Kuusk, Kaupo Komsaare, Marko Vana, Alisa Krasnova, Steffen Noe, Mikhail Arshinov, Boris Belan, Sung-Bin Park, Jošt Valentin Lavrič, Martin Heimann, Tuukka Petäjä, Timo Vesala, Ivan Mammarella, Pasi Kolari, Jaana Bäck, Üllar Rannik, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 18, 17863–17881, https://doi.org/10.5194/acp-18-17863-2018, https://doi.org/10.5194/acp-18-17863-2018, 2018
Short summary
Short summary
Understanding the connections between aerosols, solar radiation and photosynthesis in terrestrial ecosystems is important for estimates of the CO2 balance in the atmosphere. Atmospheric aerosols and clouds influence solar radiation. In this study, we quantify the aerosol effect on solar radiation in boreal forests and study forest ecosystems response to this change in the radiation conditions. The analysis is based on atmospheric observations from several remote stations in Eurasian forests.
Lindsay E. Hatch, Albert Rivas-Ubach, Coty N. Jen, Mary Lipton, Allen H. Goldstein, and Kelley C. Barsanti
Atmos. Chem. Phys., 18, 17801–17817, https://doi.org/10.5194/acp-18-17801-2018, https://doi.org/10.5194/acp-18-17801-2018, 2018
Short summary
Short summary
We demonstrate the use of solid-phase extraction (SPE) disks for the untargeted analysis of gas-phase intermediate volatility and semi-volatile organic compounds emitted from biomass burning. SPE and Teflon filter samples collected from laboratory fires were analyzed by two-dimensional gas chromatography, with distinct differences in the observed chromatographic profiles as a function of
fuel type. Fuel-dependent emissions and volatility differences among benzenediol isomers were captured.
Qiaozhi Zha, Chao Yan, Heikki Junninen, Matthieu Riva, Nina Sarnela, Juho Aalto, Lauriane Quéléver, Simon Schallhart, Lubna Dada, Liine Heikkinen, Otso Peräkylä, Jun Zou, Clémence Rose, Yonghong Wang, Ivan Mammarella, Gabriel Katul, Timo Vesala, Douglas R. Worsnop, Markku Kulmala, Tuukka Petäjä, Federico Bianchi, and Mikael Ehn
Atmos. Chem. Phys., 18, 17437–17450, https://doi.org/10.5194/acp-18-17437-2018, https://doi.org/10.5194/acp-18-17437-2018, 2018
Short summary
Short summary
Vertical measurements of highly oxygenated molecules (HOMs) below and above the forest canopy were performed for the first time in a boreal forest during September 2016. Our results highlight that near-ground HOM measurements may only be representative of a small fraction of the entire nocturnal boundary layer, which may sequentially influence the growth of newly formed particles and SOA formation close to ground surface, where the majority of measurements are conducted.
Archana Dayalu, J. William Munger, Steven C. Wofsy, Yuxuan Wang, Thomas Nehrkorn, Yu Zhao, Michael B. McElroy, Chris P. Nielsen, and Kristina Luus
Biogeosciences, 15, 6713–6729, https://doi.org/10.5194/bg-15-6713-2018, https://doi.org/10.5194/bg-15-6713-2018, 2018
Short summary
Short summary
Accounting for the vegetation signal is critical for comprehensive CO2 budget assessment in China. We model and evaluate hourly vegetation carbon dioxide (CO2) exchange (mass per unit area per unit time) in northern China from 2005 to 2009. The model is driven by satellite and meteorological data, is linked to ground-level ecosystem observations, and is applicable to other time periods. We find vegetation uptake of CO2 in summer is comparable to emissions from fossil fuels in northern China.
Archana Dayalu, J. William Munger, Yuxuan Wang, Steven C. Wofsy, Yu Zhao, Thomas Nehrkorn, Chris Nielsen, Michael B. McElroy, and Rachel Chang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-632, https://doi.org/10.5194/acp-2018-632, 2018
Revised manuscript not accepted
Short summary
Short summary
China has pledged reduction of carbon dioxide emissions per unit GDP by 60–65 % relative to 2005 levels, and to peak carbon emissions overall by 2030. Disagreement among available inventories of Chinese emissions makes it difficult for China to track progress toward its goals and evaluate the efficacy of regional control measures. This study uses a unique set of historical atmospheric observations for the key period from 2005–2009 to independently evaluate three different CO2 emissions estimates.
Pertti Hari, Steffen Noe, Sigrid Dengel, Jan Elbers, Bert Gielen, Veli-Matti Kerminen, Bart Kruijt, Liisa Kulmala, Anders Lindroth, Ivan Mammarella, Tuukka Petäjä, Guy Schurgers, Anni Vanhatalo, Markku Kulmala, and Jaana Bäck
Atmos. Chem. Phys., 18, 13321–13328, https://doi.org/10.5194/acp-18-13321-2018, https://doi.org/10.5194/acp-18-13321-2018, 2018
Short summary
Short summary
The development of eddy-covariance measurements of ecosystem CO2 fluxes began a new era in the field studies of photosynthesis. The interpretation of the very variable CO2 fluxes in evergreen forests has been problematic especially in seasonal transition times. We apply two theoretical needle-level equations and show they can predict photosynthetic CO2 flux between the atmosphere and Scots pine forests. This has strong implications for the interpretation of the global change and boreal forests.
Suzane S. de Sá, Brett B. Palm, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Gabriel Isaacman-VanWertz, Lindsay D. Yee, Joel Brito, Samara Carbone, Igor O. Ribeiro, Glauber G. Cirino, Yingjun Liu, Ryan Thalman, Arthur Sedlacek, Aaron Funk, Courtney Schumacher, John E. Shilling, Johannes Schneider, Paulo Artaxo, Allen H. Goldstein, Rodrigo A. F. Souza, Jian Wang, Karena A. McKinney, Henrique Barbosa, M. Lizabeth Alexander, Jose L. Jimenez, and Scot T. Martin
Atmos. Chem. Phys., 18, 12185–12206, https://doi.org/10.5194/acp-18-12185-2018, https://doi.org/10.5194/acp-18-12185-2018, 2018
Short summary
Short summary
This study aimed at understanding and quantifying the changes in mass concentration and composition of submicron airborne particulate matter (PM) in Amazonia due to urban pollution. Downwind of Manaus, PM concentrations increased by up to 200 % under polluted compared with background conditions. The observed changes included contributions from both primary and secondary processes. The differences in organic PM composition suggested a shift in the pathways of secondary production with pollution.
Matthew N. Hayek, Marcos Longo, Jin Wu, Marielle N. Smith, Natalia Restrepo-Coupe, Raphael Tapajós, Rodrigo da Silva, David R. Fitzjarrald, Plinio B. Camargo, Lucy R. Hutyra, Luciana F. Alves, Bruce Daube, J. William Munger, Kenia T. Wiedemann, Scott R. Saleska, and Steven C. Wofsy
Biogeosciences, 15, 4833–4848, https://doi.org/10.5194/bg-15-4833-2018, https://doi.org/10.5194/bg-15-4833-2018, 2018
Short summary
Short summary
We investigated the roles that weather and forest disturbances like drought play in shaping changes in ecosystem photosynthesis and carbon exchange in an Amazon forest. We discovered that weather largely influenced differences between years, but a prior drought, which occurred 3 years before measurements started, likely hampered photosynthesis in the first year. This is the first atmospheric evidence that drought can have legacy impacts on Amazon forest photosynthesis.
Lindsay D. Yee, Gabriel Isaacman-VanWertz, Rebecca A. Wernis, Meng Meng, Ventura Rivera, Nathan M. Kreisberg, Susanne V. Hering, Mads S. Bering, Marianne Glasius, Mary Alice Upshur, Ariana Gray Bé, Regan J. Thomson, Franz M. Geiger, John H. Offenberg, Michael Lewandowski, Ivan Kourtchev, Markus Kalberer, Suzane de Sá, Scot T. Martin, M. Lizabeth Alexander, Brett B. Palm, Weiwei Hu, Pedro Campuzano-Jost, Douglas A. Day, Jose L. Jimenez, Yingjun Liu, Karena A. McKinney, Paulo Artaxo, Juarez Viegas, Antonio Manzi, Maria B. Oliveira, Rodrigo de Souza, Luiz A. T. Machado, Karla Longo, and Allen H. Goldstein
Atmos. Chem. Phys., 18, 10433–10457, https://doi.org/10.5194/acp-18-10433-2018, https://doi.org/10.5194/acp-18-10433-2018, 2018
Short summary
Short summary
Biogenic volatile organic compounds react in the atmosphere to form secondary organic aerosol, yet the chemical pathways remain unclear. We collected filter samples and deployed a semi-volatile thermal desorption aerosol gas chromatograph in the central Amazon. We measured 30 sesquiterpenes and 4 diterpenes and find them to be important for reactive ozone loss. We estimate that sesquiterpene oxidation contributes at least 0.4–5 % (median 1 %) of observed submicron organic aerosol mass.
Mary E. Whelan, Sinikka T. Lennartz, Teresa E. Gimeno, Richard Wehr, Georg Wohlfahrt, Yuting Wang, Linda M. J. Kooijmans, Timothy W. Hilton, Sauveur Belviso, Philippe Peylin, Róisín Commane, Wu Sun, Huilin Chen, Le Kuai, Ivan Mammarella, Kadmiel Maseyk, Max Berkelhammer, King-Fai Li, Dan Yakir, Andrew Zumkehr, Yoko Katayama, Jérôme Ogée, Felix M. Spielmann, Florian Kitz, Bharat Rastogi, Jürgen Kesselmeier, Julia Marshall, Kukka-Maaria Erkkilä, Lisa Wingate, Laura K. Meredith, Wei He, Rüdiger Bunk, Thomas Launois, Timo Vesala, Johan A. Schmidt, Cédric G. Fichot, Ulli Seibt, Scott Saleska, Eric S. Saltzman, Stephen A. Montzka, Joseph A. Berry, and J. Elliott Campbell
Biogeosciences, 15, 3625–3657, https://doi.org/10.5194/bg-15-3625-2018, https://doi.org/10.5194/bg-15-3625-2018, 2018
Short summary
Short summary
Measurements of the trace gas carbonyl sulfide (OCS) are helpful in quantifying photosynthesis at previously unknowable temporal and spatial scales. While CO2 is both consumed and produced within ecosystems, OCS is mostly produced in the oceans or from specific industries, and destroyed in plant leaves in proportion to CO2. This review summarizes the advancements we have made in the understanding of OCS exchange and applications to vital ecosystem water and carbon cycle questions.
Amelie Bertrand, Giulia Stefenelli, Coty N. Jen, Simone M. Pieber, Emily A. Bruns, Haiyan Ni, Brice Temime-Roussel, Jay G. Slowik, Allen H. Goldstein, Imad El Haddad, Urs Baltensperger, André S. H. Prévôt, Henri Wortham, and Nicolas Marchand
Atmos. Chem. Phys., 18, 7607–7624, https://doi.org/10.5194/acp-18-7607-2018, https://doi.org/10.5194/acp-18-7607-2018, 2018
Short summary
Short summary
A thermal desorption aerosol gas chromatograph coupled to an aerosol mass spectrometer (TAG–AMS) is connected to an atmospheric chamber. The setup serves the quantitative study of the impact of combustion conditions and atmospheric aging on the chemical fingerprint at the molecular level of biomass burning organic aerosol.
Maria Provenzale, Anne Ojala, Jouni Heiskanen, Kukka-Maaria Erkkilä, Ivan Mammarella, Pertti Hari, and Timo Vesala
Biogeosciences, 15, 2021–2032, https://doi.org/10.5194/bg-15-2021-2018, https://doi.org/10.5194/bg-15-2021-2018, 2018
Short summary
Short summary
We extensively tested and refined a direct, high-frequency free-water CO2 measurement method to study the lake net ecosystem productivity. The method was first proposed in 2008, but neglected ever since.
With high-frequency direct methods, we can calculate the lake productivity more precisely, and parameterise its dependency on environmental variables. This helps us expand our knowledge on the carbon cycle in the water, and leads to a better integration of water bodies in carbon budgets.
Aino Korrensalo, Elisa Männistö, Pavel Alekseychik, Ivan Mammarella, Janne Rinne, Timo Vesala, and Eeva-Stiina Tuittila
Biogeosciences, 15, 1749–1761, https://doi.org/10.5194/bg-15-1749-2018, https://doi.org/10.5194/bg-15-1749-2018, 2018
Short summary
Short summary
We measured methane fluxes of a boreal bog from six different plant community types in 2012–2014. We found only little variation in methane fluxes among plant community types. Peat temperature as well as both leaf area of plant species with air channels and of all vegetation are important factors controlling the fluxes. We also detected negative net fluxes indicating methane consumption each year. Our results can be used to improve the models of peatland methane dynamics under climate change.
Paul S. Romer, Kaitlin C. Duffey, Paul J. Wooldridge, Eric Edgerton, Karsten Baumann, Philip A. Feiner, David O. Miller, William H. Brune, Abigail R. Koss, Joost A. de Gouw, Pawel K. Misztal, Allen H. Goldstein, and Ronald C. Cohen
Atmos. Chem. Phys., 18, 2601–2614, https://doi.org/10.5194/acp-18-2601-2018, https://doi.org/10.5194/acp-18-2601-2018, 2018
Short summary
Short summary
Observations of increased ozone on hotter days are widely reported, but the mechanisms driving this relationship remain uncertain. We use measurements from the rural southeastern United States to study how temperature affects ozone production. We find that changing NOx emissions, most likely from soil microbes, can be a major driver of increased ozone with temperature in the continental background. These findings suggest that ozone will increase with temperature under a wide range of conditions.
Chunjing Qiu, Dan Zhu, Philippe Ciais, Bertrand Guenet, Gerhard Krinner, Shushi Peng, Mika Aurela, Christian Bernhofer, Christian Brümmer, Syndonia Bret-Harte, Housen Chu, Jiquan Chen, Ankur R. Desai, Jiří Dušek, Eugénie S. Euskirchen, Krzysztof Fortuniak, Lawrence B. Flanagan, Thomas Friborg, Mateusz Grygoruk, Sébastien Gogo, Thomas Grünwald, Birger U. Hansen, David Holl, Elyn Humphreys, Miriam Hurkuck, Gerard Kiely, Janina Klatt, Lars Kutzbach, Chloé Largeron, Fatima Laggoun-Défarge, Magnus Lund, Peter M. Lafleur, Xuefei Li, Ivan Mammarella, Lutz Merbold, Mats B. Nilsson, Janusz Olejnik, Mikaell Ottosson-Löfvenius, Walter Oechel, Frans-Jan W. Parmentier, Matthias Peichl, Norbert Pirk, Olli Peltola, Włodzimierz Pawlak, Daniel Rasse, Janne Rinne, Gaius Shaver, Hans Peter Schmid, Matteo Sottocornola, Rainer Steinbrecher, Torsten Sachs, Marek Urbaniak, Donatella Zona, and Klaudia Ziemblinska
Geosci. Model Dev., 11, 497–519, https://doi.org/10.5194/gmd-11-497-2018, https://doi.org/10.5194/gmd-11-497-2018, 2018
Short summary
Short summary
Northern peatlands store large amount of soil carbon and are vulnerable to climate change. We implemented peatland hydrological and carbon accumulation processes into the ORCHIDEE land surface model. The model was evaluated against EC measurements from 30 northern peatland sites. The model generally well reproduced the spatial gradient and temporal variations in GPP and NEE at these sites. Water table depth was not well predicted but had only small influence on simulated NEE.
Wu Sun, Linda M. J. Kooijmans, Kadmiel Maseyk, Huilin Chen, Ivan Mammarella, Timo Vesala, Janne Levula, Helmi Keskinen, and Ulli Seibt
Atmos. Chem. Phys., 18, 1363–1378, https://doi.org/10.5194/acp-18-1363-2018, https://doi.org/10.5194/acp-18-1363-2018, 2018
Short summary
Short summary
Most soils consume carbonyl sulfide (COS) and CO due to microbial uptake, but whether boreal forest soils act like this is uncertain. We measured growing season soil COS and CO fluxes in a Finnish pine forest. The soil behaved as a consistent and relatively invariant sink of COS and CO. Uptake rates of COS and CO decrease with soil moisture due to diffusion limitation and increase with respiration because of microbial control. Using COS to infer photosynthesis is not affected by soil COS flux.
Simon Schallhart, Pekka Rantala, Maija K. Kajos, Juho Aalto, Ivan Mammarella, Taina M. Ruuskanen, and Markku Kulmala
Atmos. Chem. Phys., 18, 815–832, https://doi.org/10.5194/acp-18-815-2018, https://doi.org/10.5194/acp-18-815-2018, 2018
Short summary
Short summary
Emissions of volatile organic compounds (VOCs) have impact to air quality, human health and climate. We investigated the development of VOC exchange in a boreal forest between April and June 2013. VOC exchange and diversity increased towards summer, but over 75 % of the biogenic net exchange was driven by methanol, monoterpenes and acetone only. The boreal forest emitted less than 0.2 % carbon in form of VOCs in relation to the carbon uptake.
Kukka-Maaria Erkkilä, Anne Ojala, David Bastviken, Tobias Biermann, Jouni J. Heiskanen, Anders Lindroth, Olli Peltola, Miitta Rantakari, Timo Vesala, and Ivan Mammarella
Biogeosciences, 15, 429–445, https://doi.org/10.5194/bg-15-429-2018, https://doi.org/10.5194/bg-15-429-2018, 2018
Short summary
Short summary
Global estimates of freshwater greenhouse gas emissions are usually based on simple gas transfer models that underestimate the emissions. Thus, comparison of different gas transfer models is required for evaluating the uncertainties. This study compares three commonly used methods for estimating greenhouse gas emissions over lakes. We conclude that simple gas transfer models underestimate the emissions and more recent models should be used for global freshwater greenhouse gas emission estimates.
Brett B. Palm, Suzane S. de Sá, Douglas A. Day, Pedro Campuzano-Jost, Weiwei Hu, Roger Seco, Steven J. Sjostedt, Jeong-Hoo Park, Alex B. Guenther, Saewung Kim, Joel Brito, Florian Wurm, Paulo Artaxo, Ryan Thalman, Jian Wang, Lindsay D. Yee, Rebecca Wernis, Gabriel Isaacman-VanWertz, Allen H. Goldstein, Yingjun Liu, Stephen R. Springston, Rodrigo Souza, Matt K. Newburn, M. Lizabeth Alexander, Scot T. Martin, and Jose L. Jimenez
Atmos. Chem. Phys., 18, 467–493, https://doi.org/10.5194/acp-18-467-2018, https://doi.org/10.5194/acp-18-467-2018, 2018
Short summary
Short summary
Ambient air was oxidized by OH or O3 in an oxidation flow reactor during both wet and dry seasons in the GoAmazon2014/5 campaign to study secondary organic aerosol (SOA) formation. We investigated how much biogenic, urban, and biomass burning sources contributed to the ambient concentrations of SOA precursor gases and how their contributions changed diurnally and seasonally. SOA yields and hygroscopicity of organic aerosol in the oxidation flow reactor were also studied.
Havala O. T. Pye, Andreas Zuend, Juliane L. Fry, Gabriel Isaacman-VanWertz, Shannon L. Capps, K. Wyat Appel, Hosein Foroutan, Lu Xu, Nga L. Ng, and Allen H. Goldstein
Atmos. Chem. Phys., 18, 357–370, https://doi.org/10.5194/acp-18-357-2018, https://doi.org/10.5194/acp-18-357-2018, 2018
Short summary
Short summary
Thermodynamic modeling revealed that some but not all measurements of ammonium-to-sulfate ratios are consistent with theory. The measurement diversity likely explains the previously reported range of results regarding the suitability of thermodynamic modeling. Despite particles being predominantly phase separated, organic–inorganic interactions resulted in increased aerosol pH and partitioning towards the particle phase for highly oxygenated organic compounds compared to traditional methods.
Ben Langford, James Cash, W. Joe F. Acton, Amy C. Valach, C. Nicholas Hewitt, Silvano Fares, Ignacio Goded, Carsten Gruening, Emily House, Athina-Cerise Kalogridis, Valérie Gros, Richard Schafers, Rick Thomas, Mark Broadmeadow, and Eiko Nemitz
Biogeosciences, 14, 5571–5594, https://doi.org/10.5194/bg-14-5571-2017, https://doi.org/10.5194/bg-14-5571-2017, 2017
Short summary
Short summary
Isoprene flux measurements made above five European oak forests were reviewed to generate new emission potentials. Six variations of the Guenther algorithms were inverted to back out time series of isoprene emission potential, and then an “average” emission potential was determined using one of four commonly used approaches. Our results show that emission potentials can vary by up to a factor of 4 and highlight the need for the community to now harmonize their approach to reduce uncertainty.
Yao Gao, Tiina Markkanen, Mika Aurela, Ivan Mammarella, Tea Thum, Aki Tsuruta, Huiyi Yang, and Tuula Aalto
Biogeosciences, 14, 4409–4422, https://doi.org/10.5194/bg-14-4409-2017, https://doi.org/10.5194/bg-14-4409-2017, 2017
Short summary
Short summary
We investigated the response of water use efficiency (WUE) to summer drought in a boreal Scots pine forest (Pinus sylvestris) on the daily time scale mainly using EC flux data from the Hyytiälä (southern Finland) flux site. Simulation results from the JSBACH land surface model were also evaluated against the observed results. The performance of three WUE metrics at the ecosystem level (EWUE, IWUE, and uWUE) during the severe summer drought were studied and showed different results.
Dan Lu, Daniel Ricciuto, Anthony Walker, Cosmin Safta, and William Munger
Biogeosciences, 14, 4295–4314, https://doi.org/10.5194/bg-14-4295-2017, https://doi.org/10.5194/bg-14-4295-2017, 2017
Short summary
Short summary
Calibration of terrestrial ecosystem models (TEMs) is important but challenging. This study applies an advanced sampling technique for parameter estimation of a TEM. The results improve the model fit and predictive performance.
Linda M. J. Kooijmans, Kadmiel Maseyk, Ulli Seibt, Wu Sun, Timo Vesala, Ivan Mammarella, Pasi Kolari, Juho Aalto, Alessandro Franchin, Roberta Vecchi, Gianluigi Valli, and Huilin Chen
Atmos. Chem. Phys., 17, 11453–11465, https://doi.org/10.5194/acp-17-11453-2017, https://doi.org/10.5194/acp-17-11453-2017, 2017
Short summary
Short summary
Carbon cycle studies rely on the accuracy of models to estimate the amount of CO2 being taken up by vegetation. The gas carbonyl sulfide (COS) can serve as a tool to estimate the vegetative CO2 uptake by scaling the ecosystem uptake of COS to that of CO2. Here we investigate the nighttime fluxes of COS. The relationships found in this study will aid in implementing nighttime COS uptake in models, which is key to obtain accurate estimates of vegetative CO2 uptake with the use of COS.
Pavel Alekseychik, Ivan Mammarella, Dmitry Karpov, Sigrid Dengel, Irina Terentieva, Alexander Sabrekov, Mikhail Glagolev, and Elena Lapshina
Atmos. Chem. Phys., 17, 9333–9345, https://doi.org/10.5194/acp-17-9333-2017, https://doi.org/10.5194/acp-17-9333-2017, 2017
Short summary
Short summary
West Siberian peatlands occupy a large fraction of land area in the region, and yet little is known about their interaction with the atmosphere. We took the first measurements of CO2 and energy surface balances over a typical bog of West Siberian middle taiga, in the vicinity of the Mukhrino field station (Khanty–Mansiysk). The May–August study in a wet year (2015) revealed a relatively large photosynthetic sink of CO2 that was close to the high end of estimates at bog sites elsewhere.
Prettiny K. Ma, Yunliang Zhao, Allen L. Robinson, David R. Worton, Allen H. Goldstein, Amber M. Ortega, Jose L. Jimenez, Peter Zotter, André S. H. Prévôt, Sönke Szidat, and Patrick L. Hayes
Atmos. Chem. Phys., 17, 9237–9259, https://doi.org/10.5194/acp-17-9237-2017, https://doi.org/10.5194/acp-17-9237-2017, 2017
Short summary
Short summary
Airborne particulate matter (PM) negatively impacts air quality in cities throughout the world. An important fraction of PM is organic aerosol. We have evaluated and developed several new models for secondary organic aerosol (SOA), which is formed from the chemical processing of gaseous precursors. Using our model results, we have quantified important SOA sources and precursors and also identified possible model parameterizations that could be used for air quality predictions.
Suzane S. de Sá, Brett B. Palm, Pedro Campuzano-Jost, Douglas A. Day, Matthew K. Newburn, Weiwei Hu, Gabriel Isaacman-VanWertz, Lindsay D. Yee, Ryan Thalman, Joel Brito, Samara Carbone, Paulo Artaxo, Allen H. Goldstein, Antonio O. Manzi, Rodrigo A. F. Souza, Fan Mei, John E. Shilling, Stephen R. Springston, Jian Wang, Jason D. Surratt, M. Lizabeth Alexander, Jose L. Jimenez, and Scot T. Martin
Atmos. Chem. Phys., 17, 6611–6629, https://doi.org/10.5194/acp-17-6611-2017, https://doi.org/10.5194/acp-17-6611-2017, 2017
Antti-Jussi Kieloaho, Mari Pihlatie, Samuli Launiainen, Markku Kulmala, Marja-Liisa Riekkola, Jevgeni Parshintsev, Ivan Mammarella, Timo Vesala, and Jussi Heinonsalo
Biogeosciences, 14, 1075–1091, https://doi.org/10.5194/bg-14-1075-2017, https://doi.org/10.5194/bg-14-1075-2017, 2017
Short summary
Short summary
The alkylamines are important precursors in secondary aerosol formation in boreal forests. We quantified alkylamine concentrations in fungal species present in boreal forests in order to estimate soil as a source of atmospheric alkylamines. Based on our knowledge we estimated possible soil–atmosphere exchange of these compounds. The results shows that the boreal forest soil could act as a source of alkylamines depending on environmental conditions and studied compound.
Putian Zhou, Laurens Ganzeveld, Üllar Rannik, Luxi Zhou, Rosa Gierens, Ditte Taipale, Ivan Mammarella, and Michael Boy
Atmos. Chem. Phys., 17, 1361–1379, https://doi.org/10.5194/acp-17-1361-2017, https://doi.org/10.5194/acp-17-1361-2017, 2017
Short summary
Short summary
We implemented a multi-layer O3 dry deposition model in a 1-D model SOSAA to simulate O3 flux and concentration within and above a boreal forest at SMEAR II in Hyytiälä, Finland, in August 2010. The results showed that when RH > 70 % the O3 uptake on leaf wet skin was ~ 51 % to the total deposition at night and ~ 19 % at daytime. The sub-canopy contribution below 4.2 m was ~ 38 % at daytime. The averaged daily chemical contribution to total O3 alteration inside the canopy was less than 10 %.
Anusha P. S. Hettiyadura, Thilina Jayarathne, Karsten Baumann, Allen H. Goldstein, Joost A. de Gouw, Abigail Koss, Frank N. Keutsch, Kate Skog, and Elizabeth A. Stone
Atmos. Chem. Phys., 17, 1343–1359, https://doi.org/10.5194/acp-17-1343-2017, https://doi.org/10.5194/acp-17-1343-2017, 2017
Short summary
Short summary
Organosulfates are components of secondary organic aerosol (SOA) formed in the presence of sulfate. Herein, their abundance, identity, and potential to form as sampling artifacts were studied in Centreville, AL, USA. The 10 most abundant signals accounted for 58–78 % of the total, with at least 20–200 other species accounting for the remainder. These major species were largely associated with biogenic gases, like isoprene and monoterpenes, and are proposed targets for future standard development.
Richard Wehr, Róisín Commane, J. William Munger, J. Barry McManus, David D. Nelson, Mark S. Zahniser, Scott R. Saleska, and Steven C. Wofsy
Biogeosciences, 14, 389–401, https://doi.org/10.5194/bg-14-389-2017, https://doi.org/10.5194/bg-14-389-2017, 2017
Short summary
Short summary
Leaf stomata influence both photosynthesis and transpiration, coupling the carbon and water cycles, but there is no direct method for estimating stomatal behavior on the ecosystem scale. We use the ecosystem–atmosphere exchange of water, heat, and carbonyl sulfide to estimate canopy-integrated stomatal conductance by two independent methods. We then use that conductance to show that the seasonal dynamics of transpiration and evaporation are different than represented in current biosphere models.
Aino Korrensalo, Pavel Alekseychik, Tomáš Hájek, Janne Rinne, Timo Vesala, Lauri Mehtätalo, Ivan Mammarella, and Eeva-Stiina Tuittila
Biogeosciences, 14, 257–269, https://doi.org/10.5194/bg-14-257-2017, https://doi.org/10.5194/bg-14-257-2017, 2017
Short summary
Short summary
Photosynthetic parameters of peatland plant species were measured over one growing season in an ombrotrophic bog. Based on these measurements, ecosystem-level photosynthesis was calculated for the whole growing season and compared with an estimate derived from micrometeorological measurements. These two estimates corresponded well. Species with low areal cover at the site but high photosynthetic efficiency appeared to be potentially important for the ecosystem-level carbon balance.
Havala O. T. Pye, Benjamin N. Murphy, Lu Xu, Nga L. Ng, Annmarie G. Carlton, Hongyu Guo, Rodney Weber, Petros Vasilakos, K. Wyat Appel, Sri Hapsari Budisulistiorini, Jason D. Surratt, Athanasios Nenes, Weiwei Hu, Jose L. Jimenez, Gabriel Isaacman-VanWertz, Pawel K. Misztal, and Allen H. Goldstein
Atmos. Chem. Phys., 17, 343–369, https://doi.org/10.5194/acp-17-343-2017, https://doi.org/10.5194/acp-17-343-2017, 2017
Short summary
Short summary
We use a chemical transport model to examine how organic compounds in the atmosphere interact with water present in particles. Organic compounds themselves lead to water uptake, and organic compounds interact with water associated with inorganic compounds in the rural southeast atmosphere. Including interactions of organic compounds with water requires a treatment of nonideality to more accurately represent aerosol observations during the Southern Oxidant and Aerosol Study (SOAS) 2013.
Kirsti Ashworth, Serena H. Chung, Karena A. McKinney, Ying Liu, J. William Munger, Scot T. Martin, and Allison L. Steiner
Atmos. Chem. Phys., 16, 15461–15484, https://doi.org/10.5194/acp-16-15461-2016, https://doi.org/10.5194/acp-16-15461-2016, 2016
Jarmo Mäkelä, Jouni Susiluoto, Tiina Markkanen, Mika Aurela, Heikki Järvinen, Ivan Mammarella, Stefan Hagemann, and Tuula Aalto
Nonlin. Processes Geophys., 23, 447–465, https://doi.org/10.5194/npg-23-447-2016, https://doi.org/10.5194/npg-23-447-2016, 2016
Short summary
Short summary
The land-based hydrological cycle is one of the key processes controlling the growth and wilting of plants and the amount of carbon vegetation can assimilate. Recent studies have shown that many land surface models have biases in this area. We optimized parameters in one such model (JSBACH) and were able to enhance the model performance in many respects, but the response to drought remained unaffected. Further studies into this aspect should include alternative stomatal conductance formulations.
Yaping Zhang, Brent J. Williams, Allen H. Goldstein, Kenneth S. Docherty, and Jose L. Jimenez
Atmos. Meas. Tech., 9, 5637–5653, https://doi.org/10.5194/amt-9-5637-2016, https://doi.org/10.5194/amt-9-5637-2016, 2016
Short summary
Short summary
The binning method provides an alternate way to process GC–MS data in a very fast manner. It only takes a very small portion of time (days versus years) compared to the traditional GC–MS data analysis method (peak identification and integration). Furthermore, the binning method can also be applied to any data set from a measurement (mass spectrometry, spectroscopy, etc.) with additional separations (volatility, polarity, size, etc.).
Omar Amador-Muñoz, Pawel K. Misztal, Robin Weber, David R. Worton, Haofei Zhang, Greg Drozd, and Allen H. Goldstein
Atmos. Meas. Tech., 9, 5315–5329, https://doi.org/10.5194/amt-9-5315-2016, https://doi.org/10.5194/amt-9-5315-2016, 2016
Short summary
Short summary
Proton transfer reaction mass spectrometry (PTR-MS) was used to detect n-alkanes that generally have a lower proton affinity than water and therefore proton transfer (PT) by reaction with H3O+ is not an effective mechanism for their detection. In this study, we developed a method using a conventional PTR-MS to detect n-alkanes by optimizing ion source and drift tube conditions to vary the relative amounts of different primary ions (H3O+, O2+, NO+) in the reaction chamber (drift tube).
Üllar Rannik, Olli Peltola, and Ivan Mammarella
Atmos. Meas. Tech., 9, 5163–5181, https://doi.org/10.5194/amt-9-5163-2016, https://doi.org/10.5194/amt-9-5163-2016, 2016
Short summary
Short summary
We review available methods for the random error estimation of turbulent fluxes that are widely used by the flux community. Flux errors are evaluated theoretically as well as via numerical calculations by using measured and simulated records. We recommend two flux random errors with clear physical meaning: the total error resulting from stochastic nature of turbulence, well approximated by the method of Finkelstein and Sims (2001), and the error of the flux due to the instrumental noise.
Kaniska Mallick, Ivonne Trebs, Eva Boegh, Laura Giustarini, Martin Schlerf, Darren T. Drewry, Lucien Hoffmann, Celso von Randow, Bart Kruijt, Alessandro Araùjo, Scott Saleska, James R. Ehleringer, Tomas F. Domingues, Jean Pierre H. B. Ometto, Antonio D. Nobre, Osvaldo Luiz Leal de Moraes, Matthew Hayek, J. William Munger, and Steven C. Wofsy
Hydrol. Earth Syst. Sci., 20, 4237–4264, https://doi.org/10.5194/hess-20-4237-2016, https://doi.org/10.5194/hess-20-4237-2016, 2016
Short summary
Short summary
While quantifying vegetation water use over multiple plant function types in the Amazon Basin, we found substantial biophysical control during drought as well as a water-stress period and dominant climatic control during a water surplus period. This work has direct implication in understanding the resilience of the Amazon forest in the spectre of frequent drought menace as well as the role of drought-induced plant biophysical functioning in modulating the water-carbon coupling in this ecosystem.
Ivan Mammarella, Olli Peltola, Annika Nordbo, Leena Järvi, and Üllar Rannik
Atmos. Meas. Tech., 9, 4915–4933, https://doi.org/10.5194/amt-9-4915-2016, https://doi.org/10.5194/amt-9-4915-2016, 2016
Short summary
Short summary
In this study we have performed an inter-comparison between EddyUH and EddyPro, two public and commonly used software packages for eddy covariance data processing and calculation. The aims are to estimate the flux uncertainty due to the use of different software packages, and to assess the most critical processing steps, determining the largest deviations in the calculated fluxes. We focus not only on water vapour and carbon dioxide fluxes, but also on the methane flux.
Mari Pihlatie, Üllar Rannik, Sami Haapanala, Olli Peltola, Narasinha Shurpali, Pertti J. Martikainen, Saara Lind, Niina Hyvönen, Perttu Virkajärvi, Mark Zahniser, and Ivan Mammarella
Biogeosciences, 13, 5471–5485, https://doi.org/10.5194/bg-13-5471-2016, https://doi.org/10.5194/bg-13-5471-2016, 2016
Short summary
Short summary
The sources and sinks of carbon monoxide (CO) in the biosphere are poorly understood. We report the first continuous data series of CO fluxes measured by eddy covariance method in an agricultural bioenergy crop. The CO fluxes were seasonally and diurnally variable demonstrating the parallel consumption and production processes. Radiation was the main driver of CO emissions, and the eddy covariance method was demonstrated as suitable for linking short-term flux dynamics to environmental drivers.
Weiwei Hu, Brett B. Palm, Douglas A. Day, Pedro Campuzano-Jost, Jordan E. Krechmer, Zhe Peng, Suzane S. de Sá, Scot T. Martin, M. Lizabeth Alexander, Karsten Baumann, Lina Hacker, Astrid Kiendler-Scharr, Abigail R. Koss, Joost A. de Gouw, Allen H. Goldstein, Roger Seco, Steven J. Sjostedt, Jeong-Hoo Park, Alex B. Guenther, Saewung Kim, Francesco Canonaco, André S. H. Prévôt, William H. Brune, and Jose L. Jimenez
Atmos. Chem. Phys., 16, 11563–11580, https://doi.org/10.5194/acp-16-11563-2016, https://doi.org/10.5194/acp-16-11563-2016, 2016
Short summary
Short summary
IEPOX-SOA is biogenically derived secondary organic aerosol under anthropogenic influence, which has been shown to comprise a substantial fraction of OA globally. We investigated the lifetime of ambient IEPOX-SOA in the SE US and Amazonia, with an oxidation flow reactor and thermodenuder coupled with MS-based instrumentation. The low volatility and long lifetime of IEPOX-SOA against OH radicals' oxidation (> 2 weeks) was observed, which can help to constrain OA impact on air quality and climate.
Andrey Glazunov, Üllar Rannik, Victor Stepanenko, Vasily Lykosov, Mikko Auvinen, Timo Vesala, and Ivan Mammarella
Geosci. Model Dev., 9, 2925–2949, https://doi.org/10.5194/gmd-9-2925-2016, https://doi.org/10.5194/gmd-9-2925-2016, 2016
Short summary
Short summary
Large-eddy simulation (LES) and Lagrangian stochastic modeling of passive particle dispersion were applied to the scalar flux footprint determination in the stable atmospheric boundary layer. The footprint functions obtained in LES were compared with the functions calculated with the use of first-order single-particle Lagrangian stochastic models (LSMs) and zeroth-order Lagrangian stochastic models - the random displacement models (RDMs).
Pawel K. Misztal, Jeremy C. Avise, Thomas Karl, Klaus Scott, Haflidi H. Jonsson, Alex B. Guenther, and Allen H. Goldstein
Atmos. Chem. Phys., 16, 9611–9628, https://doi.org/10.5194/acp-16-9611-2016, https://doi.org/10.5194/acp-16-9611-2016, 2016
Short summary
Short summary
In this study, for the first time regional BVOC models are compared with direct regional measurements of fluxes from aircraft, allowing assessment of model accuracy at scales relevant to air quality modeling. We directly assess modeled isoprene emission inventories which are important for regional air quality simulations of ozone and secondary particle concentrations.
J. Kaiser, K. M. Skog, K. Baumann, S. B. Bertman, S. B. Brown, W. H. Brune, J. D. Crounse, J. A. de Gouw, E. S. Edgerton, P. A. Feiner, A. H. Goldstein, A. Koss, P. K. Misztal, T. B. Nguyen, K. F. Olson, J. M. St. Clair, A. P. Teng, S. Toma, P. O. Wennberg, R. J. Wild, L. Zhang, and F. N. Keutsch
Atmos. Chem. Phys., 16, 9349–9359, https://doi.org/10.5194/acp-16-9349-2016, https://doi.org/10.5194/acp-16-9349-2016, 2016
Short summary
Short summary
OH reactivity can be used to assess the amount of reactive carbon in an air mass. “Missing” reactivity is commonly found in forested environments and is attributed to either direct emissions of unmeasured volatile organic compounds or to unmeasured/underpredicted oxidation products. Using a box model and measurements from the 2013 SOAS campaign, we find only small discrepancies in measured and calculated reactivity. Our results suggest the discrepancies stem from unmeasured direct emissions.
Luping Su, Edward G. Patton, Jordi Vilà-Guerau de Arellano, Alex B. Guenther, Lisa Kaser, Bin Yuan, Fulizi Xiong, Paul B. Shepson, Li Zhang, David O. Miller, William H. Brune, Karsten Baumann, Eric Edgerton, Andrew Weinheimer, Pawel K. Misztal, Jeong-Hoo Park, Allen H. Goldstein, Kate M. Skog, Frank N. Keutsch, and John E. Mak
Atmos. Chem. Phys., 16, 7725–7741, https://doi.org/10.5194/acp-16-7725-2016, https://doi.org/10.5194/acp-16-7725-2016, 2016
Paul S. Romer, Kaitlin C. Duffey, Paul J. Wooldridge, Hannah M. Allen, Benjamin R. Ayres, Steven S. Brown, William H. Brune, John D. Crounse, Joost de Gouw, Danielle C. Draper, Philip A. Feiner, Juliane L. Fry, Allen H. Goldstein, Abigail Koss, Pawel K. Misztal, Tran B. Nguyen, Kevin Olson, Alex P. Teng, Paul O. Wennberg, Robert J. Wild, Li Zhang, and Ronald C. Cohen
Atmos. Chem. Phys., 16, 7623–7637, https://doi.org/10.5194/acp-16-7623-2016, https://doi.org/10.5194/acp-16-7623-2016, 2016
Short summary
Short summary
The lifetime of nitrogen oxides (NOx) is evaluated by analysis of field measurements from the southeastern United States. At warm temperatures in the daytime boundary layer, NOx interconverts rapidly with both PAN and alkyl and multifunctional nitrates (RONO2), and the relevant lifetime is the combined lifetime of these three classes. We find that the production of RONO2, followed by hydrolysis to produce nitric acid, is the dominant pathway for NOx removal in an isoprene dominated forest.
W. Joe F. Acton, Simon Schallhart, Ben Langford, Amy Valach, Pekka Rantala, Silvano Fares, Giulia Carriero, Ralf Tillmann, Sam J. Tomlinson, Ulrike Dragosits, Damiano Gianelle, C. Nicholas Hewitt, and Eiko Nemitz
Atmos. Chem. Phys., 16, 7149–7170, https://doi.org/10.5194/acp-16-7149-2016, https://doi.org/10.5194/acp-16-7149-2016, 2016
Short summary
Short summary
Volatile organic compounds (VOCs) represent a large source of reactive carbon in the atmosphere and hence have a significant impact on air quality. It is therefore important that we can accurately quantify their emission. In this paper we use three methods to determine the fluxes of reactive VOCs from a woodland canopy. We show that two different canopy-scale measurement methods give good agreement, whereas estimates based on leaf-level-based emission underestimate isoprene fluxes.
Victor Stepanenko, Ivan Mammarella, Anne Ojala, Heli Miettinen, Vasily Lykosov, and Timo Vesala
Geosci. Model Dev., 9, 1977–2006, https://doi.org/10.5194/gmd-9-1977-2016, https://doi.org/10.5194/gmd-9-1977-2016, 2016
Short summary
Short summary
A 1-D lake model is presented, reproducing temperature, oxygen, carbon dioxide and methane. All prognostic variables are treated in unified manner via generic 1-D transport equation. The model is validated vs. comprehensive observational data set gathered at Kuivajärvi Lake (Finland). Our results suggest that a gas transfer through thermocline under intense seiche motions is a bottleneck in quantifying greenhouse gas dynamics in dimictic lakes, calling for further research.
Jenny A. Fisher, Daniel J. Jacob, Katherine R. Travis, Patrick S. Kim, Eloise A. Marais, Christopher Chan Miller, Karen Yu, Lei Zhu, Robert M. Yantosca, Melissa P. Sulprizio, Jingqiu Mao, Paul O. Wennberg, John D. Crounse, Alex P. Teng, Tran B. Nguyen, Jason M. St. Clair, Ronald C. Cohen, Paul Romer, Benjamin A. Nault, Paul J. Wooldridge, Jose L. Jimenez, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Paul B. Shepson, Fulizi Xiong, Donald R. Blake, Allen H. Goldstein, Pawel K. Misztal, Thomas F. Hanisco, Glenn M. Wolfe, Thomas B. Ryerson, Armin Wisthaler, and Tomas Mikoviny
Atmos. Chem. Phys., 16, 5969–5991, https://doi.org/10.5194/acp-16-5969-2016, https://doi.org/10.5194/acp-16-5969-2016, 2016
Short summary
Short summary
We use new airborne and ground-based observations from two summer 2013 campaigns in the southeastern US, interpreted with a chemical transport model, to understand the impact of isoprene and monoterpene chemistry on the atmospheric NOx budget via production of organic nitrates (RONO2). We find that a diversity of species contribute to observed RONO2. Our work implies that the NOx sink to RONO2 production is only sensitive to NOx emissions in regions where they are already low.
S. T. Martin, P. Artaxo, L. A. T. Machado, A. O. Manzi, R. A. F. Souza, C. Schumacher, J. Wang, M. O. Andreae, H. M. J. Barbosa, J. Fan, G. Fisch, A. H. Goldstein, A. Guenther, J. L. Jimenez, U. Pöschl, M. A. Silva Dias, J. N. Smith, and M. Wendisch
Atmos. Chem. Phys., 16, 4785–4797, https://doi.org/10.5194/acp-16-4785-2016, https://doi.org/10.5194/acp-16-4785-2016, 2016
Short summary
Short summary
The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) Experiment took place in central Amazonia throughout 2014 and 2015. The experiment focused on the complex links among vegetation, atmospheric chemistry, and aerosol production on the one hand and their connections to aerosols, clouds, and precipitation on the other, especially when altered by urban pollution. This article serves as an introduction to the special issue of publications presenting findings of this experiment.
Brent J. Williams, Yaping Zhang, Xiaochen Zuo, Raul E. Martinez, Michael J. Walker, Nathan M. Kreisberg, Allen H. Goldstein, Kenneth S. Docherty, and Jose L. Jimenez
Atmos. Meas. Tech., 9, 1569–1586, https://doi.org/10.5194/amt-9-1569-2016, https://doi.org/10.5194/amt-9-1569-2016, 2016
Short summary
Short summary
The thermal desorption aerosol gas chromatograph (TAG) has been used for in situ measurements of organic marker compounds to identify atmospheric particle sources and transformation processes. Here we identify that inorganic aerosol components (e.g., nitrate and sulfate) and highly oxygenated organic components experience thermal decomposition upon sample heating. This thermal decomposition signal in the TAG system is investigated through laboratory and field data.
Sean Coburn, Barbara Dix, Eric Edgerton, Christopher D. Holmes, Douglas Kinnison, Qing Liang, Arnout ter Schure, Siyuan Wang, and Rainer Volkamer
Atmos. Chem. Phys., 16, 3743–3760, https://doi.org/10.5194/acp-16-3743-2016, https://doi.org/10.5194/acp-16-3743-2016, 2016
Short summary
Short summary
Here we present a day of case study measurements of the vertical distribution of bromine monoxide over the coastal region of the Gulf of Mexico. These measurements are used to assess the contribution of bromine radicals to the oxidation of elemental mercury in the troposphere. We find that the measured levels of bromine in the troposphere are sufficient to quickly oxidize mercury, which has significant implications for our understanding of atmospheric mercury processes.
Üllar Rannik, Luxi Zhou, Putian Zhou, Rosa Gierens, Ivan Mammarella, Andrey Sogachev, and Michael Boy
Atmos. Chem. Phys., 16, 3145–3160, https://doi.org/10.5194/acp-16-3145-2016, https://doi.org/10.5194/acp-16-3145-2016, 2016
Short summary
Short summary
Atmospheric boundary layer (ABL) model coupled with detailed atmospheric chemistry and aerosol dynamical model was used to quantify the role of aerosol and ABL dynamics in the vertical transport of aerosols at a pine forest site in southern Finland. Simulations showed that under dynamical conditions the particle fluxes above canopy can significantly deviate from the dry deposition into the canopy. The deviation can be systematic for certain particle sizes over a period of several days.
Saara E. Lind, Narasinha J. Shurpali, Olli Peltola, Ivan Mammarella, Niina Hyvönen, Marja Maljanen, Mari Räty, Perttu Virkajärvi, and Pertti J. Martikainen
Biogeosciences, 13, 1255–1268, https://doi.org/10.5194/bg-13-1255-2016, https://doi.org/10.5194/bg-13-1255-2016, 2016
Short summary
Short summary
We showed that the reed canary grass (RCG) was environmentally friendly from the CO2 balance point of view when cultivated on this mineral soil. When compared to the earlier findings on the same crop on organic soil site, the capacity of the crop to withdraw atmospheric CO2 was even stronger on the present mineral soil site than that on the organic soil site. For full estimation of the climatic impacts of this bioenergy system, a life cycle assessment will be needed.
A. Collalti, S. Marconi, A. Ibrom, C. Trotta, A. Anav, E. D'Andrea, G. Matteucci, L. Montagnani, B. Gielen, I. Mammarella, T. Grünwald, A. Knohl, F. Berninger, Y. Zhao, R. Valentini, and M. Santini
Geosci. Model Dev., 9, 479–504, https://doi.org/10.5194/gmd-9-479-2016, https://doi.org/10.5194/gmd-9-479-2016, 2016
Short summary
Short summary
This study evaluates the performances of the new version (v.5.1) of 3D-CMCC Forest Ecosystem Model in simulating gross primary productivity (GPP), against eddy covariance GPP data for 10 FLUXNET forest sites across Europe. The model consistently reproduces both in timing and in magnitude daily and monthly GPP variability across all sites, with the exception of the two Mediterranean sites. Inclusion of forest structure within simulation ameliorate in some cases the model output.
A. W. H. Chan, N. M. Kreisberg, T. Hohaus, P. Campuzano-Jost, Y. Zhao, D. A. Day, L. Kaser, T. Karl, A. Hansel, A. P. Teng, C. R. Ruehl, D. T. Sueper, J. T. Jayne, D. R. Worsnop, J. L. Jimenez, S. V. Hering, and A. H. Goldstein
Atmos. Chem. Phys., 16, 1187–1205, https://doi.org/10.5194/acp-16-1187-2016, https://doi.org/10.5194/acp-16-1187-2016, 2016
Short summary
Short summary
Using a novel instrument, we have made measurements of organic compounds that can exist as a gas or particle in the rural atmosphere. Through hourly measurements, we have identified the sources and atmospheric processes of these compounds, which are important for modeling the climate and health impact of these emissions.
Y. Gao, T. Markkanen, T. Thum, M. Aurela, A. Lohila, I. Mammarella, M. Kämäräinen, S. Hagemann, and T. Aalto
Hydrol. Earth Syst. Sci., 20, 175–191, https://doi.org/10.5194/hess-20-175-2016, https://doi.org/10.5194/hess-20-175-2016, 2016
J. Timkovsky, A. W. H. Chan, T. Dorst, A. H. Goldstein, B. Oyama, and R. Holzinger
Atmos. Meas. Tech., 8, 5177–5187, https://doi.org/10.5194/amt-8-5177-2015, https://doi.org/10.5194/amt-8-5177-2015, 2015
S. J. Lawson, M. D. Keywood, I. E. Galbally, J. L. Gras, J. M. Cainey, M. E. Cope, P. B. Krummel, P. J. Fraser, L. P. Steele, S. T. Bentley, C. P. Meyer, Z. Ristovski, and A. H. Goldstein
Atmos. Chem. Phys., 15, 13393–13411, https://doi.org/10.5194/acp-15-13393-2015, https://doi.org/10.5194/acp-15-13393-2015, 2015
Short summary
Short summary
Biomass burning (BB) plumes were opportunistically measured at the Cape Grim Baseline Station in Tasmania, Australia. We provide a unique set of trace gas and particle emission factors for temperate Australian coastal heathland fires, and attribute a major short-lived enhancement in emission ratios to a minor rainfall event. The ability of BB particles to act as cloud condensation nuclei, and the contribution of BB emissions to observed particle growth and ozone enhancements are discussed.
B. R. Ayres, H. M. Allen, D. C. Draper, S. S. Brown, R. J. Wild, J. L. Jimenez, D. A. Day, P. Campuzano-Jost, W. Hu, J. de Gouw, A. Koss, R. C. Cohen, K. C. Duffey, P. Romer, K. Baumann, E. Edgerton, S. Takahama, J. A. Thornton, B. H. Lee, F. D. Lopez-Hilfiker, C. Mohr, P. O. Wennberg, T. B. Nguyen, A. Teng, A. H. Goldstein, K. Olson, and J. L. Fry
Atmos. Chem. Phys., 15, 13377–13392, https://doi.org/10.5194/acp-15-13377-2015, https://doi.org/10.5194/acp-15-13377-2015, 2015
Short summary
Short summary
This paper reports atmospheric gas- and aerosol-phase field measurements from the southeastern United States in summer 2013 to demonstrate that the oxidation of biogenic volatile organic compounds by nitrate radical produces a substantial amount of secondary organic aerosol in this region. This process, driven largely by monoterpenes, results in a comparable aerosol nitrate production rate to inorganic nitrate formation by heterogeneous uptake of HNO3 onto dust particles.
A. Guha, D. R. Gentner, R. J. Weber, R. Provencal, and A. H. Goldstein
Atmos. Chem. Phys., 15, 12043–12063, https://doi.org/10.5194/acp-15-12043-2015, https://doi.org/10.5194/acp-15-12043-2015, 2015
Short summary
Short summary
We perform a positive matrix factorization (PMF)-based source apportionment by combining GHG measurements with coincident VOC measurements in the San Joaquin Valley of California. Using VOCs as source tracers, we identify dairies and livestock as major sources of CH4 and N2O in the region. Agriculture is a significant source of N2O enhancements too, while vehicle emissions are found to be a negligible source of N2O. The findings are relevant to the state’s GHG inventory verification process.
W. W. Hu, P. Campuzano-Jost, B. B. Palm, D. A. Day, A. M. Ortega, P. L. Hayes, J. E. Krechmer, Q. Chen, M. Kuwata, Y. J. Liu, S. S. de Sá, K. McKinney, S. T. Martin, M. Hu, S. H. Budisulistiorini, M. Riva, J. D. Surratt, J. M. St. Clair, G. Isaacman-Van Wertz, L. D. Yee, A. H. Goldstein, S. Carbone, J. Brito, P. Artaxo, J. A. de Gouw, A. Koss, A. Wisthaler, T. Mikoviny, T. Karl, L. Kaser, W. Jud, A. Hansel, K. S. Docherty, M. L. Alexander, N. H. Robinson, H. Coe, J. D. Allan, M. R. Canagaratna, F. Paulot, and J. L. Jimenez
Atmos. Chem. Phys., 15, 11807–11833, https://doi.org/10.5194/acp-15-11807-2015, https://doi.org/10.5194/acp-15-11807-2015, 2015
Short summary
Short summary
This work summarized all the studies reporting isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) measured globally by aerosol mass spectrometer and compare them with modeled gas-phase IEPOX, with results suggestive of the importance of IEPOX-SOA for regional and global OA budgets. A real-time tracer of IEPOX-SOA is thoroughly evaluated for the first time by combing multiple field and chamber studies. A quick and easy empirical method on IEPOX-SOA estimation is also presented.
F. Xiong, K. M. McAvey, K. A. Pratt, C. J. Groff, M. A. Hostetler, M. A. Lipton, T. K. Starn, J. V. Seeley, S. B. Bertman, A. P. Teng, J. D. Crounse, T. B. Nguyen, P. O. Wennberg, P. K. Misztal, A. H. Goldstein, A. B. Guenther, A. R. Koss, K. F. Olson, J. A. de Gouw, K. Baumann, E. S. Edgerton, P. A. Feiner, L. Zhang, D. O. Miller, W. H. Brune, and P. B. Shepson
Atmos. Chem. Phys., 15, 11257–11272, https://doi.org/10.5194/acp-15-11257-2015, https://doi.org/10.5194/acp-15-11257-2015, 2015
Short summary
Short summary
Hydroxynitrates from isoprene oxidation were quantified both in the laboratory and through field studies. The yield of hydroxynitrates 9(+4/-3)% derived from chamber experiments was applied in a zero-dimensional model to simulate the production and loss of isoprene hydroxynitrates in an ambient environment during the 2013 Southern Oxidant and Aerosol Study (SOAS). NOx was determined to be the limiting factor for the formation of isoprene hydroxynitrates during SOAS.
L. Molina, G. Broquet, P. Imbach, F. Chevallier, B. Poulter, D. Bonal, B. Burban, M. Ramonet, L. V. Gatti, S. C. Wofsy, J. W. Munger, E. Dlugokencky, and P. Ciais
Atmos. Chem. Phys., 15, 8423–8438, https://doi.org/10.5194/acp-15-8423-2015, https://doi.org/10.5194/acp-15-8423-2015, 2015
Z. Y. Wu, L. Zhang, X. M. Wang, and J. W. Munger
Atmos. Chem. Phys., 15, 7487–7496, https://doi.org/10.5194/acp-15-7487-2015, https://doi.org/10.5194/acp-15-7487-2015, 2015
Short summary
Short summary
In this study, we have developed a modified micrometeorological gradient method (MGM), although based on existing micrometeorological theory, to estimate O3 dry deposition fluxes over a forest canopy using concentration gradients between a level above and a level below the canopy top. The new method provides an alternative approach in monitoring/estimating long-term deposition fluxes of similar pollutants over tall canopies and is expected to be useful for the scientific community.
G. Wohlfahrt, C. Amelynck, C. Ammann, A. Arneth, I. Bamberger, A. H. Goldstein, L. Gu, A. Guenther, A. Hansel, B. Heinesch, T. Holst, L. Hörtnagl, T. Karl, Q. Laffineur, A. Neftel, K. McKinney, J. W. Munger, S. G. Pallardy, G. W. Schade, R. Seco, and N. Schoon
Atmos. Chem. Phys., 15, 7413–7427, https://doi.org/10.5194/acp-15-7413-2015, https://doi.org/10.5194/acp-15-7413-2015, 2015
Short summary
Short summary
Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of plants as the major source and the reaction with OH as the major sink, global methanol budgets diverge considerably in terms of source/sink estimates. Here we present micrometeorological methanol flux data from eight sites in order to provide a first cross-site synthesis of the terrestrial methanol exchange.
F. Minunno, M. Peltoniemi, S. Launiainen, M. Aurela, A. Lindroth, A. Lohila, I. Mammarella, K. Minkkinen, and A. Mäkelä
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-8-5089-2015, https://doi.org/10.5194/gmdd-8-5089-2015, 2015
Revised manuscript not accepted
K. R. Baker, A. G. Carlton, T. E. Kleindienst, J. H. Offenberg, M. R. Beaver, D. R. Gentner, A. H. Goldstein, P. L. Hayes, J. L. Jimenez, J. B. Gilman, J. A. de Gouw, M. C. Woody, H. O. T. Pye, J. T. Kelly, M. Lewandowski, M. Jaoui, P. S. Stevens, W. H. Brune, Y.-H. Lin, C. L. Rubitschun, and J. D. Surratt
Atmos. Chem. Phys., 15, 5243–5258, https://doi.org/10.5194/acp-15-5243-2015, https://doi.org/10.5194/acp-15-5243-2015, 2015
Short summary
Short summary
This work details the evaluation of PM2.5 carbon, VOC precursors, and OH estimated by the CMAQ photochemical transport model using routine and special measurements from the 2010 CalNex field study. Here, CMAQ and most recent emissions inventory (2011 NEI) are used to generate model PM2.5 OC estimates that are examined in novel ways including primary vs. secondary formation, fossil vs. contemporary carbon, OH and HO2 evaluation, and the relationship between key VOC precursors and SOC tracers.
Ü. Rannik, S. Haapanala, N. J. Shurpali, I. Mammarella, S. Lind, N. Hyvönen, O. Peltola, M. Zahniser, P. J. Martikainen, and T. Vesala
Biogeosciences, 12, 415–432, https://doi.org/10.5194/bg-12-415-2015, https://doi.org/10.5194/bg-12-415-2015, 2015
C. Wu, I. Pullinen, S. Andres, G. Carriero, S. Fares, H. Goldbach, L. Hacker, T. Kasal, A. Kiendler-Scharr, E. Kleist, E. Paoletti, A. Wahner, J. Wildt, and Th. F. Mentel
Biogeosciences, 12, 177–191, https://doi.org/10.5194/bg-12-177-2015, https://doi.org/10.5194/bg-12-177-2015, 2015
Short summary
Short summary
Impacts of soil moisture on de novo monoterpene emissions from several tree species were studied. Mild drought slightly increased MT emissions, but with further progressing drought the emissions decreased to almost zero. Increases of MT emissions were explainable by increases of leaf temperature due to lowered transpirational cooling. The decrease of emissions observed when soil moisture fell below certain thresholds was parameterized, allowing considering impacts of soil moisture in models.
G. Isaacman, N. M. Kreisberg, L. D. Yee, D. R. Worton, A. W. H. Chan, J. A. Moss, S. V. Hering, and A. H. Goldstein
Atmos. Meas. Tech., 7, 4417–4429, https://doi.org/10.5194/amt-7-4417-2014, https://doi.org/10.5194/amt-7-4417-2014, 2014
Short summary
Short summary
We present here a new in situ instrument for ambient measurements of highly polar organic semi-volatile and low-volatility compounds in both the gas and particle phase by gas chromatography. Compounds previously measured only through filter collection and offline analysis can now be measured hourly with, in most cases, less than 20% uncertainty. This instrument provides unprecedented time resolution and the first ever observations of gas-particle partitioning for most of these compounds.
N. M. Kreisberg, D. R. Worton, Y. Zhao, G. Isaacman, A. H. Goldstein, and S. V. Hering
Atmos. Meas. Tech., 7, 4431–4444, https://doi.org/10.5194/amt-7-4431-2014, https://doi.org/10.5194/amt-7-4431-2014, 2014
Y. You, V. P. Kanawade, J. A. de Gouw, A. B. Guenther, S. Madronich, M. R. Sierra-Hernández, M. Lawler, J. N. Smith, S. Takahama, G. Ruggeri, A. Koss, K. Olson, K. Baumann, R. J. Weber, A. Nenes, H. Guo, E. S. Edgerton, L. Porcelli, W. H. Brune, A. H. Goldstein, and S.-H. Lee
Atmos. Chem. Phys., 14, 12181–12194, https://doi.org/10.5194/acp-14-12181-2014, https://doi.org/10.5194/acp-14-12181-2014, 2014
Short summary
Short summary
Amiens play important roles in atmospheric secondary aerosol formation and human health, but the fast response measurements of amines are lacking. Here we show measurements in a southeastern US forest and a moderately polluted midwestern site. Our results show that gas to particle conversion is an important process that controls ambient amine concentrations and that biomass burning is an important source of amines.
P. K. Misztal, T. Karl, R. Weber, H. H. Jonsson, A. B. Guenther, and A. H. Goldstein
Atmos. Chem. Phys., 14, 10631–10647, https://doi.org/10.5194/acp-14-10631-2014, https://doi.org/10.5194/acp-14-10631-2014, 2014
L. K. Meredith, R. Commane, J. W. Munger, A. Dunn, J. Tang, S. C. Wofsy, and R. G. Prinn
Atmos. Meas. Tech., 7, 2787–2805, https://doi.org/10.5194/amt-7-2787-2014, https://doi.org/10.5194/amt-7-2787-2014, 2014
T. R. Dallmann, T. B. Onasch, T. W. Kirchstetter, D. R. Worton, E. C. Fortner, S. C. Herndon, E. C. Wood, J. P. Franklin, D. R. Worsnop, A. H. Goldstein, and R. A. Harley
Atmos. Chem. Phys., 14, 7585–7599, https://doi.org/10.5194/acp-14-7585-2014, https://doi.org/10.5194/acp-14-7585-2014, 2014
J. Ortega, A. Turnipseed, A. B. Guenther, T. G. Karl, D. A. Day, D. Gochis, J. A. Huffman, A. J. Prenni, E. J. T. Levin, S. M. Kreidenweis, P. J. DeMott, Y. Tobo, E. G. Patton, A. Hodzic, Y. Y. Cui, P. C. Harley, R. S. Hornbrook, E. C. Apel, R. K. Monson, A. S. D. Eller, J. P. Greenberg, M. C. Barth, P. Campuzano-Jost, B. B. Palm, J. L. Jimenez, A. C. Aiken, M. K. Dubey, C. Geron, J. Offenberg, M. G. Ryan, P. J. Fornwalt, S. C. Pryor, F. N. Keutsch, J. P. DiGangi, A. W. H. Chan, A. H. Goldstein, G. M. Wolfe, S. Kim, L. Kaser, R. Schnitzhofer, A. Hansel, C. A. Cantrell, R. L. Mauldin, and J. N. Smith
Atmos. Chem. Phys., 14, 6345–6367, https://doi.org/10.5194/acp-14-6345-2014, https://doi.org/10.5194/acp-14-6345-2014, 2014
C. Knote, A. Hodzic, J. L. Jimenez, R. Volkamer, J. J. Orlando, S. Baidar, J. Brioude, J. Fast, D. R. Gentner, A. H. Goldstein, P. L. Hayes, W. B. Knighton, H. Oetjen, A. Setyan, H. Stark, R. Thalman, G. Tyndall, R. Washenfelder, E. Waxman, and Q. Zhang
Atmos. Chem. Phys., 14, 6213–6239, https://doi.org/10.5194/acp-14-6213-2014, https://doi.org/10.5194/acp-14-6213-2014, 2014
O. Peltola, A. Hensen, C. Helfter, L. Belelli Marchesini, F. C. Bosveld, W. C. M. van den Bulk, J. A. Elbers, S. Haapanala, J. Holst, T. Laurila, A. Lindroth, E. Nemitz, T. Röckmann, A. T. Vermeulen, and I. Mammarella
Biogeosciences, 11, 3163–3186, https://doi.org/10.5194/bg-11-3163-2014, https://doi.org/10.5194/bg-11-3163-2014, 2014
D. R. Gentner, E. Ormeño, S. Fares, T. B. Ford, R. Weber, J.-H. Park, J. Brioude, W. M. Angevine, J. F. Karlik, and A. H. Goldstein
Atmos. Chem. Phys., 14, 5393–5413, https://doi.org/10.5194/acp-14-5393-2014, https://doi.org/10.5194/acp-14-5393-2014, 2014
D. R. Gentner, T. B. Ford, A. Guha, K. Boulanger, J. Brioude, W. M. Angevine, J. A. de Gouw, C. Warneke, J. B. Gilman, T. B. Ryerson, J. Peischl, S. Meinardi, D. R. Blake, E. Atlas, W. A. Lonneman, T. E. Kleindienst, M. R. Beaver, J. M. St. Clair, P. O. Wennberg, T. C. VandenBoer, M. Z. Markovic, J. G. Murphy, R. A. Harley, and A. H. Goldstein
Atmos. Chem. Phys., 14, 4955–4978, https://doi.org/10.5194/acp-14-4955-2014, https://doi.org/10.5194/acp-14-4955-2014, 2014
S. E. Pusede, D. R. Gentner, P. J. Wooldridge, E. C. Browne, A. W. Rollins, K.-E. Min, A. R. Russell, J. Thomas, L. Zhang, W. H. Brune, S. B. Henry, J. P. DiGangi, F. N. Keutsch, S. A. Harrold, J. A. Thornton, M. R. Beaver, J. M. St. Clair, P. O. Wennberg, J. Sanders, X. Ren, T. C. VandenBoer, M. Z. Markovic, A. Guha, R. Weber, A. H. Goldstein, and R. C. Cohen
Atmos. Chem. Phys., 14, 3373–3395, https://doi.org/10.5194/acp-14-3373-2014, https://doi.org/10.5194/acp-14-3373-2014, 2014
A. E. Andrews, J. D. Kofler, M. E. Trudeau, J. C. Williams, D. H. Neff, K. A. Masarie, D. Y. Chao, D. R. Kitzis, P. C. Novelli, C. L. Zhao, E. J. Dlugokencky, P. M. Lang, M. J. Crotwell, M. L. Fischer, M. J. Parker, J. T. Lee, D. D. Baumann, A. R. Desai, C. O. Stanier, S. F. J. De Wekker, D. E. Wolfe, J. W. Munger, and P. P. Tans
Atmos. Meas. Tech., 7, 647–687, https://doi.org/10.5194/amt-7-647-2014, https://doi.org/10.5194/amt-7-647-2014, 2014
J.-H. Park, S. Fares, R. Weber, and A. H. Goldstein
Atmos. Chem. Phys., 14, 231–244, https://doi.org/10.5194/acp-14-231-2014, https://doi.org/10.5194/acp-14-231-2014, 2014
P. C. Stoy, M. C. Dietze, A. D. Richardson, R. Vargas, A. G. Barr, R. S. Anderson, M. A. Arain, I. T. Baker, T. A. Black, J. M. Chen, R. B. Cook, C. M. Gough, R. F. Grant, D. Y. Hollinger, R. C. Izaurralde, C. J. Kucharik, P. Lafleur, B. E. Law, S. Liu, E. Lokupitiya, Y. Luo, J. W. Munger, C. Peng, B. Poulter, D. T. Price, D. M. Ricciuto, W. J. Riley, A. K. Sahoo, K. Schaefer, C. R. Schwalm, H. Tian, H. Verbeeck, and E. Weng
Biogeosciences, 10, 6893–6909, https://doi.org/10.5194/bg-10-6893-2013, https://doi.org/10.5194/bg-10-6893-2013, 2013
N. Unger, K. Harper, Y. Zheng, N. Y. Kiang, I. Aleinov, A. Arneth, G. Schurgers, C. Amelynck, A. Goldstein, A. Guenther, B. Heinesch, C. N. Hewitt, T. Karl, Q. Laffineur, B. Langford, K. A. McKinney, P. Misztal, M. Potosnak, J. Rinne, S. Pressley, N. Schoon, and D. Serça
Atmos. Chem. Phys., 13, 10243–10269, https://doi.org/10.5194/acp-13-10243-2013, https://doi.org/10.5194/acp-13-10243-2013, 2013
U. S. Nair, Y. Wu, C. D. Holmes, A. Ter Schure, G. Kallos, and J. T. Walters
Atmos. Chem. Phys., 13, 10143–10157, https://doi.org/10.5194/acp-13-10143-2013, https://doi.org/10.5194/acp-13-10143-2013, 2013
R. Holzinger, A. H. Goldstein, P. L. Hayes, J. L. Jimenez, and J. Timkovsky
Atmos. Chem. Phys., 13, 10125–10141, https://doi.org/10.5194/acp-13-10125-2013, https://doi.org/10.5194/acp-13-10125-2013, 2013
O. Peltola, I. Mammarella, S. Haapanala, G. Burba, and T. Vesala
Biogeosciences, 10, 3749–3765, https://doi.org/10.5194/bg-10-3749-2013, https://doi.org/10.5194/bg-10-3749-2013, 2013
K. Kristensen, K. L. Enggrob, S. M. King, D. R. Worton, S. M. Platt, R. Mortensen, T. Rosenoern, J. D. Surratt, M. Bilde, A. H. Goldstein, and M. Glasius
Atmos. Chem. Phys., 13, 3763–3776, https://doi.org/10.5194/acp-13-3763-2013, https://doi.org/10.5194/acp-13-3763-2013, 2013
J.-H. Park, A. H. Goldstein, J. Timkovsky, S. Fares, R. Weber, J. Karlik, and R. Holzinger
Atmos. Chem. Phys., 13, 1439–1456, https://doi.org/10.5194/acp-13-1439-2013, https://doi.org/10.5194/acp-13-1439-2013, 2013
Related subject area
Biogeochemistry: Air - Land Exchange
Evaluating adsorption isotherm models for determining the partitioning of ammonium between soil and soil pore water in environmental soil samples
Similar freezing spectra of particles in plant canopies and in the air at a high-altitude site
Anticorrelation of net uptake of atmospheric CO2 by the world ocean and terrestrial biosphere in current carbon cycle models
Impact of meteorological conditions on the biogenic volatile organic compound (BVOC) emission rate from eastern Mediterranean vegetation under drought
Monitoring cropland daily carbon dioxide exchange at field scales with Sentinel-2 satellite imagery
Compound soil and atmospheric drought (CSAD) events and CO2 fluxes of a mixed deciduous forest: the occurrence, impact, and temporal contribution of main drivers
The influence of plant water stress on vegetation–atmosphere exchanges: implications for ozone modelling
An elucidatory model of oxygen’s partial pressure inside substomatal cavities
High interspecific variability in ice nucleation activity suggests pollen ice nucleators are incidental
Using automated machine learning for the upscaling of gross primary productivity
Aggregation of ice-nucleating macromolecules from Betula pendula pollen determines ice nucleation efficiency
Interpretability of negative latent heat fluxes from eddy covariance measurements in dry conditions
Forest-floor respiration, N2O fluxes, and CH4 fluxes in a subalpine spruce forest: drivers and annual budgets
Enhanced net CO2 exchange of a semideciduous forest in the southern Amazon due to diffuse radiation from biomass burning
Observational relationships between ammonia, carbon dioxide and water vapor under a wide range of meteorological and turbulent conditions: RITA-2021 campaign
Environmental controls of winter soil carbon dioxide fluxes in boreal and tundra environments
Origin of secondary fatty alcohols in atmospheric aerosols in a cool–temperate forest based on their mass size distributions
Sap flow and leaf gas exchange response to a drought and heatwave in urban green spaces in a Nordic city
Changes in biogenic volatile organic compound emissions in response to the El Niño–Southern Oscillation
Rethinking the deployment of static chambers for CO2 flux measurement in dry desert soils
Lichen species across Alaska produce highly active and stable ice nucleators
A differentiable, physics-informed ecosystem modeling and learning framework for large-scale inverse problems: demonstration with photosynthesis simulations
Snow–vegetation–atmosphere interactions in alpine tundra
Synergy between TROPOMI sun-induced chlorophyll fluorescence and MODIS spectral reflectance for understanding the dynamics of gross primary productivity at Integrated Carbon Observatory System (ICOS) ecosystem flux sites
Atmospheric deposition of reactive nitrogen to a deciduous forest in the southern Appalachian Mountains
Tropical cyclones facilitate recovery of forest leaf area from dry spells in East Asia
Minor contributions of daytime monoterpenes are major contributors to atmospheric reactivity
Using atmospheric observations to quantify annual biogenic carbon dioxide fluxes on the Alaska North Slope
Forest–atmosphere exchange of reactive nitrogen in a remote region – Part II: Modeling annual budgets
Growth and actual leaf temperature modulate CO2 responsiveness of monoterpene emissions from holm oak in opposite ways
Multi-year observations reveal a larger than expected autumn respiration signal across northeast Eurasia
Reviews and syntheses: VOC emissions from soil cover in boreal and temperate natural ecosystems of the Northern Hemisphere
Internal tree cycling and atmospheric archiving of mercury: examination with concentration and stable isotope analyses
Contrasting drought legacy effects on gross primary productivity in a mixed versus pure beech forest
CO2 and CH4 exchanges between moist moss tundra and atmosphere on Kapp Linné, Svalbard
Recent extreme drought events in the Amazon rainforest: assessment of different precipitation and evapotranspiration datasets and drought indicators
Variability and uncertainty in flux-site-scale net ecosystem exchange simulations based on machine learning and remote sensing: a systematic evaluation
Update of a biogeochemical model with process-based algorithms to predict ammonia volatilization from fertilized cultivated uplands and rice paddy fields
Massive warming-induced carbon loss from subalpine grassland soils in an altitudinal transplantation experiment
Climatic variation drives loss and restructuring of carbon and nitrogen in boreal forest wildfire
Gaps in network infrastructure limit our understanding of biogenic methane emissions for the United States
Changes of the aerodynamic characteristics of a flux site after an extensive windthrow
Carbon sequestration potential of street tree plantings in Helsinki
Technical note: Incorporating expert domain knowledge into causal structure discovery workflows
Sensitivity of biomass burning emissions estimates to land surface information
A convolutional neural network for spatial downscaling of satellite-based solar-induced chlorophyll fluorescence (SIFnet)
Influence of plant ecophysiology on ozone dry deposition: comparing between multiplicative and photosynthesis-based dry deposition schemes and their responses to rising CO2 level
Modeling the interinfluence of fertilizer-induced NH3 emission, nitrogen deposition, and aerosol radiative effects using modified CESM2
Physiological and climate controls on foliar mercury uptake by European tree species
Radiation, soil water content, and temperature effects on carbon cycling in an alpine swamp meadow of the northeastern Qinghai–Tibetan Plateau
Matthew G. Davis, Kevin Yan, and Jennifer G. Murphy
Biogeosciences, 21, 5381–5392, https://doi.org/10.5194/bg-21-5381-2024, https://doi.org/10.5194/bg-21-5381-2024, 2024
Short summary
Short summary
Ammonia applied as fertilizer can volatilize into the atmosphere. This can threaten vulnerable ecosystems and human health. We investigated the partitioning of ammonia between an immobile adsorbed phase and mobile aqueous phase using several adsorption models. Using the Temkin model we determined that previous approaches to this issue may overestimate the quantity available for exchange by a factor of 5–20, suggesting that ammonia emissions from soil may be overestimated.
Annika Einbock and Franz Conen
Biogeosciences, 21, 5219–5231, https://doi.org/10.5194/bg-21-5219-2024, https://doi.org/10.5194/bg-21-5219-2024, 2024
Short summary
Short summary
A small fraction of particles found at great heights in the atmosphere can freeze cloud droplets at temperatures of ≥ −10 °C and thus influence cloud properties. We provide a novel type of evidence that plant canopies are a major source of such biological ice-nucleating particles in the air above the Alps, potentially affecting mixed-phase cloud development.
Stephen E. Schwartz
Biogeosciences, 21, 5045–5057, https://doi.org/10.5194/bg-21-5045-2024, https://doi.org/10.5194/bg-21-5045-2024, 2024
Short summary
Short summary
Anticorrelation in uptake of atmospheric CO2 following pulse emission or abrupt cessation of emissions is examined in two key model intercomparison studies. In both studies net transfer coefficients from the atmosphere to the world ocean and the terrestrial biosphere are anticorrelated across models, reducing inter-model diversity in decrease of atmospheric CO2 following the perturbation, increasing uncertainties of global warming potentials and consequences of prospective emission reductions.
Qian Li, Gil Lerner, Einat Bar, Efraim Lewinsohn, and Eran Tas
Biogeosciences, 21, 4133–4147, https://doi.org/10.5194/bg-21-4133-2024, https://doi.org/10.5194/bg-21-4133-2024, 2024
Short summary
Short summary
Our research indicates that instantaneous changes in meteorological parameters better reflect drought-induced changes in the emission rates of biogenic volatile organic compounds (BVOCs) from natural vegetation than their absolute values. However, following a small amount of irrigation, this trend became more moderate or reversed, accompanied by a dramatic increase in BVOC emission rates. These findings advance our understanding of BVOC emissions under climate change.
Pia Gottschalk, Aram Kalhori, Zhan Li, Christian Wille, and Torsten Sachs
Biogeosciences, 21, 3593–3616, https://doi.org/10.5194/bg-21-3593-2024, https://doi.org/10.5194/bg-21-3593-2024, 2024
Short summary
Short summary
To improve the accuracy of spatial carbon exchange estimates, we evaluated simple linear models for net ecosystem exchange (NEE) and gross primary productivity (GPP) and how they can be used to upscale the CO2 exchange of agricultural fields. The models are solely driven by Sentinel-2-derived vegetation indices (VIs). Evaluations show that different VIs have variable power to estimate NEE and GPP of crops in different years. The overall performance is as good as results from complex crop models.
Liliana Scapucci, Ankit Shekhar, Sergio Aranda-Barranco, Anastasiia Bolshakova, Lukas Hörtnagl, Mana Gharun, and Nina Buchmann
Biogeosciences, 21, 3571–3592, https://doi.org/10.5194/bg-21-3571-2024, https://doi.org/10.5194/bg-21-3571-2024, 2024
Short summary
Short summary
Forests face increased exposure to “compound soil and atmospheric drought” (CSAD) events due to global warming. We examined the impacts and drivers of CO2 fluxes during CSAD events at multiple layers of a deciduous forest over 18 years. Results showed reduced net ecosystem productivity and forest-floor respiration during CSAD events, mainly driven by soil and atmospheric drought. This unpredictability in forest CO2 fluxes jeopardises reforestation projects aimed at mitigating CO2 emissions.
Tamara Emmerichs, Yen-Sen Lu, and Domenico Taraborrelli
Biogeosciences, 21, 3251–3269, https://doi.org/10.5194/bg-21-3251-2024, https://doi.org/10.5194/bg-21-3251-2024, 2024
Short summary
Short summary
We assess the representation of the plant response to surface water in a global atmospheric chemistry model. This sensitivity is crucial for the return of precipitation back into the atmosphere and thus significantly impacts the representation of weather as well as air quality. The newly implemented response function reduces this process and has a better comparison with satellite observations. This yields a higher intensity of unusual warm periods and higher production of air pollutants.
Andrew S. Kowalski
EGUsphere, https://doi.org/10.5194/egusphere-2024-1966, https://doi.org/10.5194/egusphere-2024-1966, 2024
Short summary
Short summary
The laws of physics show that leaf oxygen is not photosynthetically enriched, but extremely dilute due to the overwhelming effects of humidification. This challenges the prevailing diffusion-only paradigm regarding leaf gas exchanges, requiring non-diffusive transport. Such transport also explains why fluxes of carbon dioxide and water vapour become decoupled at very high temperatures, as has been observed but not explained by plant physiologists.
Nina L. H. Kinney, Charles A. Hepburn, Matthew I. Gibson, Daniel Ballesteros, and Thomas F. Whale
Biogeosciences, 21, 3201–3214, https://doi.org/10.5194/bg-21-3201-2024, https://doi.org/10.5194/bg-21-3201-2024, 2024
Short summary
Short summary
Molecules released from plant pollen induce the formation of ice from supercooled water at temperatures warm enough to suggest an underlying function for this activity. In this study we show that ice nucleators are ubiquitous in pollen. We suggest the molecules responsible fulfil some unrelated biological function and nucleate ice incidentally. The ubiquity of ice-nucleating molecules in pollen and particularly active examples reveal a greater potential for pollen to impact weather and climate.
Max Gaber, Yanghui Kang, Guy Schurgers, and Trevor Keenan
Biogeosciences, 21, 2447–2472, https://doi.org/10.5194/bg-21-2447-2024, https://doi.org/10.5194/bg-21-2447-2024, 2024
Short summary
Short summary
Gross primary productivity (GPP) describes the photosynthetic carbon assimilation, which plays a vital role in the carbon cycle. We can measure GPP locally, but producing larger and continuous estimates is challenging. Here, we present an approach to extrapolate GPP to a global scale using satellite imagery and automated machine learning. We benchmark different models and predictor variables and achieve an estimate that can capture 75 % of the variation in GPP.
Florian Wieland, Nadine Bothen, Ralph Schwidetzky, Teresa M. Seifried, Paul Bieber, Ulrich Pöschl, Konrad Meister, Mischa Bonn, Janine Fröhlich-Nowoisky, and Hinrich Grothe
EGUsphere, https://doi.org/10.5194/egusphere-2024-752, https://doi.org/10.5194/egusphere-2024-752, 2024
Short summary
Short summary
Betula pendula is a widespread birch tree species containing ice nucleation agents that can trigger the freezing of cloud droplets, and thereby alter the evolution of clouds. Our study identifies three distinct ice-nucleating macromolecules (INMs) and aggregates of varying size that can nucleate ice at temperatures of up to -5.4 °C. Our findings suggest that these vegetation-derived particles may influence atmospheric processes, weather, and climate stronger than previously thought.
Sinikka J. Paulus, Rene Orth, Sung-Ching Lee, Anke Hildebrandt, Martin Jung, Jacob A. Nelson, Tarek Sebastian El-Madany, Arnaud Carrara, Gerardo Moreno, Matthias Mauder, Jannis Groh, Alexander Graf, Markus Reichstein, and Mirco Migliavacca
Biogeosciences, 21, 2051–2085, https://doi.org/10.5194/bg-21-2051-2024, https://doi.org/10.5194/bg-21-2051-2024, 2024
Short summary
Short summary
Porous materials are known to reversibly trap water from the air, even at low humidity. However, this behavior is poorly understood for soils. In this analysis, we test whether eddy covariance is able to measure the so-called adsorption of atmospheric water vapor by soils. We find that this flux occurs frequently during dry nights in a Mediterranean ecosystem, while EC detects downwardly directed vapor fluxes. These results can help to map moisture uptake globally.
Luana Krebs, Susanne Burri, Iris Feigenwinter, Mana Gharun, Philip Meier, and Nina Buchmann
Biogeosciences, 21, 2005–2028, https://doi.org/10.5194/bg-21-2005-2024, https://doi.org/10.5194/bg-21-2005-2024, 2024
Short summary
Short summary
This study explores year-round forest-floor greenhouse gas (GHG) fluxes in a Swiss spruce forest. Soil temperature and snow depth affected forest-floor respiration, while CH4 uptake was linked to snow cover. Negligible N2O fluxes were observed. In 2022, a warm year, CO2 emissions notably increased. The study suggests rising forest-floor GHG emissions due to climate change, impacting carbon sink behavior. Thus, for future forest management, continuous year-round GHG flux measurements are crucial.
Simone Rodrigues, Glauber Cirino, Demerval Moreira, Andrea Pozzer, Rafael Palácios, Sung-Ching Lee, Breno Imbiriba, José Nogueira, Maria Isabel Vitorino, and George Vourlitis
Biogeosciences, 21, 843–868, https://doi.org/10.5194/bg-21-843-2024, https://doi.org/10.5194/bg-21-843-2024, 2024
Short summary
Short summary
The radiative effects of atmospheric particles are still unknown for a wide variety of species and types of vegetation present in Amazonian biomes. We examined the effects of aerosols on solar radiation and their impacts on photosynthesis in an area of semideciduous forest in the southern Amazon Basin. Under highly smoky-sky conditions, our results show substantial photosynthetic interruption (20–70 %), attributed specifically to the decrease in solar radiation and leaf canopy temperature.
Ruben B. Schulte, Jordi Vilà-Guerau de Arellano, Susanna Rutledge-Jonker, Shelley van der Graaf, Jun Zhang, and Margreet C. van Zanten
Biogeosciences, 21, 557–574, https://doi.org/10.5194/bg-21-557-2024, https://doi.org/10.5194/bg-21-557-2024, 2024
Short summary
Short summary
We analyzed measurements with the aim of finding relations between the surface atmosphere exchange of NH3 and the CO2 uptake and transpiration by vegetation. We found a high correlation of daytime NH3 emissions with both latent heat flux and photosynthetically active radiation. Very few simultaneous measurements of NH3, CO2 fluxes and meteorological variables exist at sub-diurnal timescales. This study paves the way to finding more robust relations between the NH3 exchange flux and CO2 uptake.
Alex Mavrovic, Oliver Sonnentag, Juha Lemmetyinen, Carolina Voigt, Nick Rutter, Paul Mann, Jean-Daniel Sylvain, and Alexandre Roy
Biogeosciences, 20, 5087–5108, https://doi.org/10.5194/bg-20-5087-2023, https://doi.org/10.5194/bg-20-5087-2023, 2023
Short summary
Short summary
We present an analysis of soil CO2 emissions in boreal and tundra regions during the non-growing season. We show that when the soil is completely frozen, soil temperature is the main control on CO2 emissions. When the soil is around the freezing point, with a mix of liquid water and ice, the liquid water content is the main control on CO2 emissions. This study highlights that the vegetation–snow–soil interactions must be considered to understand soil CO2 emissions during the non-growing season.
Yuhao Cui, Eri Tachibana, Kimitaka Kawamura, and Yuzo Miyazaki
Biogeosciences, 20, 4969–4980, https://doi.org/10.5194/bg-20-4969-2023, https://doi.org/10.5194/bg-20-4969-2023, 2023
Short summary
Short summary
Fatty alcohols (FAs) are major components of surface lipids in plant leaves and serve as surface-active aerosols. Our study on the aerosol size distributions in a forest suggests that secondary FAs (SFAs) originated from plant waxes and that leaf senescence status is likely an important factor controlling the size distribution of SFAs. This study provides new insights into the sources of primary biological aerosol particles (PBAPs) and their effects on the aerosol ice nucleation activity.
Joyson Ahongshangbam, Liisa Kulmala, Jesse Soininen, Yasmin Frühauf, Esko Karvinen, Yann Salmon, Anna Lintunen, Anni Karvonen, and Leena Järvi
Biogeosciences, 20, 4455–4475, https://doi.org/10.5194/bg-20-4455-2023, https://doi.org/10.5194/bg-20-4455-2023, 2023
Short summary
Short summary
Urban vegetation is important for removing urban CO2 emissions and cooling. We studied the response of urban trees' functions (photosynthesis and transpiration) to a heatwave and drought at four urban green areas in the city of Helsinki. We found that tree water use was increased during heatwave and drought periods, but there was no change in the photosynthesis rates. The heat and drought conditions were severe at the local scale but were not excessive enough to restrict urban trees' functions.
Ryan Vella, Andrea Pozzer, Matthew Forrest, Jos Lelieveld, Thomas Hickler, and Holger Tost
Biogeosciences, 20, 4391–4412, https://doi.org/10.5194/bg-20-4391-2023, https://doi.org/10.5194/bg-20-4391-2023, 2023
Short summary
Short summary
We investigated the effect of the El Niño–Southern Oscillation (ENSO) on biogenic volatile organic compound (BVOC) emissions from plants. ENSO events can cause a significant increase in these emissions, which have a long-term impact on the Earth's atmosphere. Persistent ENSO conditions can cause long-term changes in vegetation, resulting in even higher BVOC emissions. We link ENSO-induced emission anomalies with driving atmospheric and vegetational variables.
Nadav Bekin and Nurit Agam
Biogeosciences, 20, 3791–3802, https://doi.org/10.5194/bg-20-3791-2023, https://doi.org/10.5194/bg-20-3791-2023, 2023
Short summary
Short summary
The mechanisms of soil CO2 flux in dry desert soils are not fully understood. Yet studies conducted in desert ecosystems rarely discuss potential errors related to using the commonly used flux chambers in dry and bare soils. In our study, the conventional deployment practice of the chambers underestimated the instantaneous CO2 flux by up to 50 % and the total daily CO2 uptake by 35 %. This suggests that desert soils are a larger carbon sink than previously reported.
Rosemary J. Eufemio, Ingrid de Almeida Ribeiro, Todd L. Sformo, Gary A. Laursen, Valeria Molinero, Janine Fröhlich-Nowoisky, Mischa Bonn, and Konrad Meister
Biogeosciences, 20, 2805–2812, https://doi.org/10.5194/bg-20-2805-2023, https://doi.org/10.5194/bg-20-2805-2023, 2023
Short summary
Short summary
Lichens, the dominant vegetation in the Arctic, contain ice nucleators (INs) that enable freezing close to 0°C. Yet the abundance, diversity, and function of lichen INs is unknown. Our screening of lichens across Alaska reveal that most species have potent INs. We find that lichens contain two IN populations which retain activity under environmentally relevant conditions. The ubiquity and stability of lichen INs suggest that they may have considerable impacts on local atmospheric patterns.
Doaa Aboelyazeed, Chonggang Xu, Forrest M. Hoffman, Jiangtao Liu, Alex W. Jones, Chris Rackauckas, Kathryn Lawson, and Chaopeng Shen
Biogeosciences, 20, 2671–2692, https://doi.org/10.5194/bg-20-2671-2023, https://doi.org/10.5194/bg-20-2671-2023, 2023
Short summary
Short summary
Photosynthesis is critical for life and has been affected by the changing climate. Many parameters come into play while modeling, but traditional calibration approaches face many issues. Our framework trains coupled neural networks to provide parameters to a photosynthesis model. Using big data, we independently found parameter values that were correlated with those in the literature while giving higher correlation and reduced biases in photosynthesis rates.
Norbert Pirk, Kristoffer Aalstad, Yeliz A. Yilmaz, Astrid Vatne, Andrea L. Popp, Peter Horvath, Anders Bryn, Ane Victoria Vollsnes, Sebastian Westermann, Terje Koren Berntsen, Frode Stordal, and Lena Merete Tallaksen
Biogeosciences, 20, 2031–2047, https://doi.org/10.5194/bg-20-2031-2023, https://doi.org/10.5194/bg-20-2031-2023, 2023
Short summary
Short summary
We measured the land–atmosphere exchange of CO2 and water vapor in alpine Norway over 3 years. The extremely snow-rich conditions in 2020 reduced the total annual evapotranspiration to 50 % and reduced the growing-season carbon assimilation to turn the ecosystem from a moderate annual carbon sink to an even stronger source. Our analysis suggests that snow cover anomalies are driving the most consequential short-term responses in this ecosystem’s functioning.
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, and Kamel Soudani
Biogeosciences, 20, 1473–1490, https://doi.org/10.5194/bg-20-1473-2023, https://doi.org/10.5194/bg-20-1473-2023, 2023
Short summary
Short summary
This study focuses on the relationship between sun-induced chlorophyll fluorescence (SIF) and ecosystem gross primary productivity (GPP) across the ICOS European flux tower network. It shows that SIF, coupled with reflectance observations, explains over 80 % of the GPP variability across diverse ecosystems but fails to bring new information compared to reflectance alone at coarse spatial scales (~5 km). These findings have applications in agriculture and ecophysiological studies.
John T. Walker, Xi Chen, Zhiyong Wu, Donna Schwede, Ryan Daly, Aleksandra Djurkovic, A. Christopher Oishi, Eric Edgerton, Jesse Bash, Jennifer Knoepp, Melissa Puchalski, John Iiames, and Chelcy F. Miniat
Biogeosciences, 20, 971–995, https://doi.org/10.5194/bg-20-971-2023, https://doi.org/10.5194/bg-20-971-2023, 2023
Short summary
Short summary
Better estimates of atmospheric nitrogen (N) deposition are needed to accurately assess ecosystem risk and impacts from deposition of nutrients and acidity. Using measurements and modeling, we estimate total N deposition of 6.7 kg N ha−1 yr−1 at a forest site in the southern Appalachian Mountains, a region sensitive to atmospheric deposition. Reductions in deposition of reduced forms of N (ammonia and ammonium) will be needed to meet the lowest estimates of N critical loads for the region.
Yi-Ying Chen and Sebastiaan Luyssaert
Biogeosciences, 20, 349–363, https://doi.org/10.5194/bg-20-349-2023, https://doi.org/10.5194/bg-20-349-2023, 2023
Short summary
Short summary
Tropical cyclones are typically assumed to be associated with ecosystem damage. This study challenges this assumption and suggests that instead of reducing leaf area, cyclones in East Asia may increase leaf area by alleviating water stress.
Deborah F. McGlynn, Graham Frazier, Laura E. R. Barry, Manuel T. Lerdau, Sally E. Pusede, and Gabriel Isaacman-VanWertz
Biogeosciences, 20, 45–55, https://doi.org/10.5194/bg-20-45-2023, https://doi.org/10.5194/bg-20-45-2023, 2023
Short summary
Short summary
Using a custom-made gas chromatography flame ionization detector, 2 years of speciated hourly biogenic volatile organic compound data were collected in a forest in central Virginia. We identify diurnal and seasonal variability in the data, which is shown to impact atmospheric oxidant budgets. A comparison with emission models identified discrepancies with implications for model outcomes. We suggest increased monitoring of speciated biogenic volatile organic compounds to improve modeled results.
Luke D. Schiferl, Jennifer D. Watts, Erik J. L. Larson, Kyle A. Arndt, Sébastien C. Biraud, Eugénie S. Euskirchen, Jordan P. Goodrich, John M. Henderson, Aram Kalhori, Kathryn McKain, Marikate E. Mountain, J. William Munger, Walter C. Oechel, Colm Sweeney, Yonghong Yi, Donatella Zona, and Róisín Commane
Biogeosciences, 19, 5953–5972, https://doi.org/10.5194/bg-19-5953-2022, https://doi.org/10.5194/bg-19-5953-2022, 2022
Short summary
Short summary
As the Arctic rapidly warms, vast stores of thawing permafrost could release carbon dioxide (CO2) into the atmosphere. We combined observations of atmospheric CO2 concentrations from aircraft and a tower with observed CO2 fluxes from tundra ecosystems and found that the Alaskan North Slope in not a consistent source nor sink of CO2. Our study shows the importance of using both site-level and atmospheric measurements to constrain regional net CO2 fluxes and improve biogenic processes in models.
Pascal Wintjen, Frederik Schrader, Martijn Schaap, Burkhard Beudert, Richard Kranenburg, and Christian Brümmer
Biogeosciences, 19, 5287–5311, https://doi.org/10.5194/bg-19-5287-2022, https://doi.org/10.5194/bg-19-5287-2022, 2022
Short summary
Short summary
For the first time, we compared four methods for estimating the annual dry deposition of total reactive nitrogen into a low-polluted forest ecosystem. In our analysis, we used 2.5 years of flux measurements, an in situ modeling approach, a large-scale chemical transport model (CTM), and canopy budget models. Annual nitrogen dry deposition budgets ranged between 4.3 and 6.7 kg N ha−1 a−1, depending on the applied method.
Michael Staudt, Juliane Daussy, Joseph Ingabire, and Nafissa Dehimeche
Biogeosciences, 19, 4945–4963, https://doi.org/10.5194/bg-19-4945-2022, https://doi.org/10.5194/bg-19-4945-2022, 2022
Short summary
Short summary
We studied the short- and long-term effects of CO2 as a function of temperature on monoterpene emissions from holm oak. Similarly to isoprene, emissions decreased non-linearly with increasing CO2, with no differences among compounds and chemotypes. The CO2 response was modulated by actual leaf and growth temperature but not by growth CO2. Estimates of annual monoterpene release under double CO2 suggest that CO2 inhibition does not offset the increase in emissions due to expected warming.
Brendan Byrne, Junjie Liu, Yonghong Yi, Abhishek Chatterjee, Sourish Basu, Rui Cheng, Russell Doughty, Frédéric Chevallier, Kevin W. Bowman, Nicholas C. Parazoo, David Crisp, Xing Li, Jingfeng Xiao, Stephen Sitch, Bertrand Guenet, Feng Deng, Matthew S. Johnson, Sajeev Philip, Patrick C. McGuire, and Charles E. Miller
Biogeosciences, 19, 4779–4799, https://doi.org/10.5194/bg-19-4779-2022, https://doi.org/10.5194/bg-19-4779-2022, 2022
Short summary
Short summary
Plants draw CO2 from the atmosphere during the growing season, while respiration releases CO2 to the atmosphere throughout the year, driving seasonal variations in atmospheric CO2 that can be observed by satellites, such as the Orbiting Carbon Observatory 2 (OCO-2). Using OCO-2 XCO2 data and space-based constraints on plant growth, we show that permafrost-rich northeast Eurasia has a strong seasonal release of CO2 during the autumn, hinting at an unexpectedly large respiration signal from soils.
Valery A. Isidorov and Andrej A. Zaitsev
Biogeosciences, 19, 4715–4746, https://doi.org/10.5194/bg-19-4715-2022, https://doi.org/10.5194/bg-19-4715-2022, 2022
Short summary
Short summary
Biogenic volatile organic compounds (VOCs) play a critical role in earth-system processes: they are
main playersin the formation of tropospheric O3 and secondary aerosols, which have a significant impact on climate, human health and crops. A complex mixture of VOCs, formed as a result of physicochemical and biological processes, is released into the atmosphere from the forest floor. This review presents data on the composition of VOCs and contribution of various processes to their emissions.
David S. McLagan, Harald Biester, Tomas Navrátil, Stephan M. Kraemer, and Lorenz Schwab
Biogeosciences, 19, 4415–4429, https://doi.org/10.5194/bg-19-4415-2022, https://doi.org/10.5194/bg-19-4415-2022, 2022
Short summary
Short summary
Spruce and larch trees are effective archiving species for historical atmospheric mercury using growth rings of bole wood. Mercury stable isotope analysis proved an effective tool to characterise industrial mercury signals and assess mercury uptake pathways (leaf uptake for both wood and bark) and mercury cycling within the trees. These data detail important information for understanding the mercury biogeochemical cycle particularly in forest systems.
Xin Yu, René Orth, Markus Reichstein, Michael Bahn, Anne Klosterhalfen, Alexander Knohl, Franziska Koebsch, Mirco Migliavacca, Martina Mund, Jacob A. Nelson, Benjamin D. Stocker, Sophia Walther, and Ana Bastos
Biogeosciences, 19, 4315–4329, https://doi.org/10.5194/bg-19-4315-2022, https://doi.org/10.5194/bg-19-4315-2022, 2022
Short summary
Short summary
Identifying drought legacy effects is challenging because they are superimposed on variability driven by climate conditions in the recovery period. We develop a residual-based approach to quantify legacies on gross primary productivity (GPP) from eddy covariance data. The GPP reduction due to legacy effects is comparable to the concurrent effects at two sites in Germany, which reveals the importance of legacy effects. Our novel methodology can be used to quantify drought legacies elsewhere.
Anders Lindroth, Norbert Pirk, Ingibjörg S. Jónsdóttir, Christian Stiegler, Leif Klemedtsson, and Mats B. Nilsson
Biogeosciences, 19, 3921–3934, https://doi.org/10.5194/bg-19-3921-2022, https://doi.org/10.5194/bg-19-3921-2022, 2022
Short summary
Short summary
We measured the fluxes of carbon dioxide and methane between a moist moss tundra and the atmosphere on Svalbard in order to better understand how such ecosystems are affecting the climate and vice versa. We found that the system was a small sink of carbon dioxide and a small source of methane. These fluxes are small in comparison with other tundra ecosystems in the high Arctic. Analysis of temperature sensitivity showed that respiration was more sensitive than photosynthesis above about 6 ℃.
Phillip Papastefanou, Christian S. Zang, Zlatan Angelov, Aline Anderson de Castro, Juan Carlos Jimenez, Luiz Felipe Campos De Rezende, Romina C. Ruscica, Boris Sakschewski, Anna A. Sörensson, Kirsten Thonicke, Carolina Vera, Nicolas Viovy, Celso Von Randow, and Anja Rammig
Biogeosciences, 19, 3843–3861, https://doi.org/10.5194/bg-19-3843-2022, https://doi.org/10.5194/bg-19-3843-2022, 2022
Short summary
Short summary
The Amazon rainforest has been hit by multiple severe drought events. In this study, we assess the severity and spatial extent of the extreme drought years 2005, 2010 and 2015/16 in the Amazon. Using nine different precipitation datasets and three drought indicators we find large differences in drought stress across the Amazon region. We conclude that future studies should use multiple rainfall datasets and drought indicators when estimating the impact of drought stress in the Amazon region.
Haiyang Shi, Geping Luo, Olaf Hellwich, Mingjuan Xie, Chen Zhang, Yu Zhang, Yuangang Wang, Xiuliang Yuan, Xiaofei Ma, Wenqiang Zhang, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 19, 3739–3756, https://doi.org/10.5194/bg-19-3739-2022, https://doi.org/10.5194/bg-19-3739-2022, 2022
Short summary
Short summary
A number of studies have been conducted by using machine learning approaches to simulate carbon fluxes. We performed a meta-analysis of these net ecosystem exchange (NEE) simulations. Random forests and support vector machines performed better than other algorithms. Models with larger timescales had a lower accuracy. For different plant functional types (PFTs), there were significant differences in the predictors used and their effects on model accuracy.
Siqi Li, Wei Zhang, Xunhua Zheng, Yong Li, Shenghui Han, Rui Wang, Kai Wang, Zhisheng Yao, Chunyan Liu, and Chong Zhang
Biogeosciences, 19, 3001–3019, https://doi.org/10.5194/bg-19-3001-2022, https://doi.org/10.5194/bg-19-3001-2022, 2022
Short summary
Short summary
The CNMM–DNDC model was modified to simulate ammonia volatilization (AV) from croplands. AV from cultivated uplands followed the first-order kinetics, which was jointly regulated by the factors of soil properties and meteorological conditions. AV simulation from rice paddy fields was improved by incorporating Jayaweera–Mikkelsen mechanisms. The modified model performed well in simulating the observed cumulative AV measured from 63 fertilization events in China.
Matthias Volk, Matthias Suter, Anne-Lena Wahl, and Seraina Bassin
Biogeosciences, 19, 2921–2937, https://doi.org/10.5194/bg-19-2921-2022, https://doi.org/10.5194/bg-19-2921-2022, 2022
Short summary
Short summary
Because soils are an important sink for greenhouse gasses, we subjected sub-alpine grassland to a six-level climate change treatment.
Two independent methods showed that at warming > 1.5 °C the grassland ecosystem lost ca. 14 % or ca. 1 kg C m−2 in 5 years.
This shrinking of the terrestrial C sink implies a substantial positive feedback to the atmospheric greenhouse effect.
It is likely that this dramatic C loss is a transient effect before a new, climate-adjusted steady state is reached.
Johan A. Eckdahl, Jeppe A. Kristensen, and Daniel B. Metcalfe
Biogeosciences, 19, 2487–2506, https://doi.org/10.5194/bg-19-2487-2022, https://doi.org/10.5194/bg-19-2487-2022, 2022
Short summary
Short summary
This study found climate to be a driving force for increasing per area emissions of greenhouse gases and removal of important nutrients from high-latitude forests due to wildfire. It used detailed direct measurements over a large area to uncover patterns and mechanisms of restructuring of forest carbon and nitrogen pools that are extrapolatable to larger regions. It also takes a step forward in filling gaps in global knowledge of northern forest response to climate-change-strengthened wildfires.
Sparkle L. Malone, Youmi Oh, Kyle A. Arndt, George Burba, Roisin Commane, Alexandra R. Contosta, Jordan P. Goodrich, Henry W. Loescher, Gregory Starr, and Ruth K. Varner
Biogeosciences, 19, 2507–2522, https://doi.org/10.5194/bg-19-2507-2022, https://doi.org/10.5194/bg-19-2507-2022, 2022
Short summary
Short summary
To understand the CH4 flux potential of natural ecosystems and agricultural lands in the United States of America, a multi-scale CH4 observation network focused on CH4 flux rates, processes, and scaling methods is required. This can be achieved with a network of ground-based observations that are distributed based on climatic regions and land cover.
Bruna R. F. Oliveira, Jan J. Keizer, and Thomas Foken
Biogeosciences, 19, 2235–2243, https://doi.org/10.5194/bg-19-2235-2022, https://doi.org/10.5194/bg-19-2235-2022, 2022
Short summary
Short summary
This study analyzes the impacts of this windthrow on the aerodynamic characteristics of zero-plane displacement and roughness length and, ultimately, their implications for the turbulent fluxes. The turbulent fluxes were only affected to a minor degree by the windthrow, but the footprint area of the flux tower changed markedly so that the target area of the measurements had to be redetermined.
Minttu Havu, Liisa Kulmala, Pasi Kolari, Timo Vesala, Anu Riikonen, and Leena Järvi
Biogeosciences, 19, 2121–2143, https://doi.org/10.5194/bg-19-2121-2022, https://doi.org/10.5194/bg-19-2121-2022, 2022
Short summary
Short summary
The carbon sequestration potential of two street tree species and the soil beneath them was quantified with the urban land surface model SUEWS and the soil carbon model Yasso. The street tree plantings turned into a modest sink of carbon from the atmosphere after 14 years. Overall, the results indicate the importance of soil in urban carbon sequestration estimations, as soil respiration exceeded the carbon uptake in the early phase, due to the high initial carbon loss from the soil.
Jarmo Mäkelä, Laila Melkas, Ivan Mammarella, Tuomo Nieminen, Suyog Chandramouli, Rafael Savvides, and Kai Puolamäki
Biogeosciences, 19, 2095–2099, https://doi.org/10.5194/bg-19-2095-2022, https://doi.org/10.5194/bg-19-2095-2022, 2022
Short summary
Short summary
Causal structure discovery algorithms have been making headway into Earth system sciences, and they can be used to increase our understanding on biosphere–atmosphere interactions. In this paper we present a procedure on how to utilize prior knowledge of the domain experts together with these algorithms in order to find more robust causal structure models. We also demonstrate how to avoid pitfalls such as over-fitting and concept drift during this process.
Makoto Saito, Tomohiro Shiraishi, Ryuichi Hirata, Yosuke Niwa, Kazuyuki Saito, Martin Steinbacher, Doug Worthy, and Tsuneo Matsunaga
Biogeosciences, 19, 2059–2078, https://doi.org/10.5194/bg-19-2059-2022, https://doi.org/10.5194/bg-19-2059-2022, 2022
Short summary
Short summary
This study tested combinations of two sources of AGB data and two sources of LCC data and used the same burned area satellite data to estimate BB CO emissions. Our analysis showed large discrepancies in annual mean CO emissions and explicit differences in the simulated CO concentrations among the BB emissions estimates. This study has confirmed that BB emissions estimates are sensitive to the land surface information on which they are based.
Johannes Gensheimer, Alexander J. Turner, Philipp Köhler, Christian Frankenberg, and Jia Chen
Biogeosciences, 19, 1777–1793, https://doi.org/10.5194/bg-19-1777-2022, https://doi.org/10.5194/bg-19-1777-2022, 2022
Short summary
Short summary
We develop a convolutional neural network, named SIFnet, that increases the spatial resolution of SIF from TROPOMI by a factor of 10 to a spatial resolution of 0.005°. SIFnet utilizes coarse SIF observations, together with a broad range of high-resolution auxiliary data. The insights gained from interpretable machine learning techniques allow us to make quantitative claims about the relationships between SIF and other common parameters related to photosynthesis.
Shihan Sun, Amos P. K. Tai, David H. Y. Yung, Anthony Y. H. Wong, Jason A. Ducker, and Christopher D. Holmes
Biogeosciences, 19, 1753–1776, https://doi.org/10.5194/bg-19-1753-2022, https://doi.org/10.5194/bg-19-1753-2022, 2022
Short summary
Short summary
We developed and used a terrestrial biosphere model to compare and evaluate widely used empirical dry deposition schemes with different stomatal approaches and found that using photosynthesis-based stomatal approaches can reduce biases in modeled dry deposition velocities in current chemical transport models. Our study shows systematic errors in current dry deposition schemes and the importance of representing plant ecophysiological processes in models under a changing climate.
Ka Ming Fung, Maria Val Martin, and Amos P. K. Tai
Biogeosciences, 19, 1635–1655, https://doi.org/10.5194/bg-19-1635-2022, https://doi.org/10.5194/bg-19-1635-2022, 2022
Short summary
Short summary
Fertilizer-induced ammonia detrimentally affects the environment by not only directly damaging ecosystems but also indirectly altering climate and soil fertility. To quantify these secondary impacts, we enabled CESM to simulate ammonia emission, chemical evolution, and deposition as a continuous cycle. If synthetic fertilizer use is to soar by 30 % from today's level, we showed that the counteracting impacts will increase the global ammonia emission by 3.3 Tg N per year.
Lena Wohlgemuth, Pasi Rautio, Bernd Ahrends, Alexander Russ, Lars Vesterdal, Peter Waldner, Volkmar Timmermann, Nadine Eickenscheidt, Alfred Fürst, Martin Greve, Peter Roskams, Anne Thimonier, Manuel Nicolas, Anna Kowalska, Morten Ingerslev, Päivi Merilä, Sue Benham, Carmen Iacoban, Günter Hoch, Christine Alewell, and Martin Jiskra
Biogeosciences, 19, 1335–1353, https://doi.org/10.5194/bg-19-1335-2022, https://doi.org/10.5194/bg-19-1335-2022, 2022
Short summary
Short summary
Gaseous mercury is present in the atmosphere all over the globe. During the growing season, plants take up mercury from the air in a similar way as CO2. We investigated which factors impact this vegetational mercury uptake by analyzing a large dataset of leaf mercury uptake rates of trees in Europe. As a result, we conclude that mercury uptake is foremost controlled by tree-intrinsic traits like physiological activity but also by climatic factors like dry conditions in the air and in soils.
Junqi Wei, Xiaoyan Li, Lei Liu, Torben Røjle Christensen, Zhiyun Jiang, Yujun Ma, Xiuchen Wu, Hongyun Yao, and Efrén López-Blanco
Biogeosciences, 19, 861–875, https://doi.org/10.5194/bg-19-861-2022, https://doi.org/10.5194/bg-19-861-2022, 2022
Short summary
Short summary
Although water availability has been linked to the response of ecosystem carbon (C) sink–source to climate warming, the mechanisms by which C uptake responds to soil moisture remain unclear. We explored how soil water and other environmental drivers modulate net C uptake in an alpine swamp meadow. Results reveal that nearly saturated soil conditions during warm seasons can help to maintain lower ecosystem respiration and therefore enhance the C sequestration capacity in this alpine swamp meadow.
Cited articles
Acosta, M., Pavelka, M., Montagnani, L., Kutsch, W., Lindroth, A., Juszczak,
R., and Janouš, D.: Soil surface CO2 efflux measurements in Norway spruce
forests: Comparison between four different sites across Europe – from
boreal to alpine forest, Geoderma, 192, 295–303,
https://doi.org/10.1016/j.geoderma.2012.08.027, 2013.
Ainsworth, E. A. and Long, S. P.: What have we learned from 15 years of
free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of
photosynthesis, canopy properties and plant production to rising CO2, New
Phytol., 165, 351–372, https://doi.org/10.1111/j.1469-8137.2004.01224.x, 2005.
Ainsworth, E. E. A., Yendrek, C. R., Sitch, S., Collins, W. J., and Emberson,
L. D.: The effects of tropospheric ozone on net primary productivity and
implications for climate change, Annu. Rev. Plant Biol., 63,
637–61, https://doi.org/10.1146/annurev-arplant-042110-103829, 2012.
Altimir, N., Kolari, P., Tuovinen, J., Vesala, T., Bäck, J., Suni, T.,
Hari, P., Altimir, N., Kolari, P., Tuovinen, J., Vesala, T., and Bäck,
J.: Foliage surface ozone deposition: a role for surface moisture?,
Biogeosciences, 3, 209–228, https://doi.org/10.5194/bg-3-209-2006.
Ammann, C., Spirig, C., Leifeld, J., and Neftel, A.: Assessment of the
nitrogen and carbon budget of two managed temperate grassland fields, Agr.
Ecosyst. Environ., 133, 150–162, https://doi.org/10.1016/j.agee.2009.05.006,
2009.
Anderson, D. E., Verma, S. B., and Rosenberg, N. J.: Eddy correlation
measurements of CO2, latent heat, and sensible heat fluxes over a crop
surface, Bound.-Lay. Meteorol., 29, 263–272, https://doi.org/10.1007/BF00119792,
1984.
Anthoni, P. M., Knohl, A., Rebmann, C., Freibauer, A., Mund, M., Ziegler,
W., Kolle, O., and Schulze, E.-D.: Forest and agricultural land-use-dependent
CO2 exchange in Thuringia, Germany, Glob. Change Biol., 10, 2005–2019,
https://doi.org/10.1111/j.1365-2486.2004.00863.x, 2004.
Aubinet, M., Chermanne, B., Vandenhaute, M., Longdoz, B., Yernaux, M., and
Laitat, E.: Long term carbon dioxide exchange above a mixed forest in the
Belgian Ardennes, Agr. Forest Meteorol., 108, 293–315,
https://doi.org/10.1016/s0168-1923(01)00244-1, 2001.
Avnery, S., Mauzerall, D. L., Liu, J., and Horowitz, L. W.: Global crop yield
reductions due to surface ozone exposure: 1. Year 2000 crop production
losses and economic damage, Atmos. Environ., 45, 2284–2296,
https://doi.org/10.1016/j.atmosenv.2010.11.045, 2011.
Baldocchi, D.: AmeriFlux US-Tw4 Twitchell East End Wetland, Ameriflux, Univ. of Califronia, Berkeley,
CA, USA,
https://doi.org/10.17190/AMF/1246151, 2016.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S.,
Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A.,
Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W.,
Paw, U. K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S.,
Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A new tool to study the
temporal and spatial variability of ecosystem-scale carbon dioxide, water
vapor, and energy flux densities, B. Am. Meteorol. Soc., 82, 2415–2434,
https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001.
Baldocchi, D., Chen, Q., Chen, X., Ma, S., Miller, G., Ryu, Y., Xiao, J.,
Wenk, R., and Battles, J.: The dynamics of energy, water, and carbon fluxes
in a blue oak (Quercus douglasii) savanna in California, Ecosyst. Funct.
Savannas, 1, 135–151, https://doi.org/10.1201/b10275-10, 2010.
Berbigier, P., Bonnefond, J.-M., and Mellmann, P.: CO2 and water vapour
fluxes for 2 years above Euroflux forest site, Agr. Forest Meteorol.,
108, 183–197, https://doi.org/10.1016/s0168-1923(01)00240-4, 2001.
Bonan, G. B., Lawrence, P. J., Oleson, K. W., Levis, S., Jung, M.,
Reichstein, M., Lawrence, D. M., and Swenson, S. C.: Improving canopy
processes in the Community Land Model version 4 (CLM4) using global flux
fields empirically inferred from FLUXNET data, J. Geophys. Res., 116,
G02014, https://doi.org/10.1029/2010JG001593, 2011.
Bowling, D. R., Bethers-Marchetti, S., Lunch, C. K., Grote, E. E., and
Belnap, J.: Carbon, water, and energy fluxes in a semiarid cold desert
grassland during and following multiyear drought, J. Geophys. Res., 115,
G04026, https://doi.org/10.1029/2010jg001322, 2010.
Büker, P., Feng, Z., Uddling, J., Briolat, A., Alonso, R., Braun, S.,
Elvira, S., Gerosa, G., Karlsson, P. E., Le Thiec, D., Marzuoli, R., Mills,
G., Oksanen, E., Wieser, G., Wilkinson, M., and Emberson, L. D.: New flux
based dose-response relationships for ozone for European forest tree
species, Environ. Pollut., 206, 163–174, https://doi.org/10.1016/j.envpol.2015.06.033,
2015.
Carrara, A., Janssens, I. A., Yuste, J. C., and Ceulemans, R.: Seasonal
changes in photosynthesis, respiration and NEE of a mixed temperate forest,
Agr. Forest Meteorol., 126, 15–31,
https://doi.org/10.1016/j.agrformet.2004.05.002, 2004.
Chiesi, M., Maselli, F., Bindi, M., Fibbi, L., Cherubini, P., Arlotta, E.,
Tirone, G., Matteucci, G., and Seufert, G.: Modelling carbon budget of
Mediterranean forests using ground and remote sensing measurements, Agr.
Forest Meteorol., 135, 22–34, https://doi.org/10.1016/j.agrformet.2005.09.011,
2005.
Cieslik, S. A.: Ozone uptake by various surface types: A comparison between
dose and exposure, Atmos. Environ., 38, 2409–2420,
https://doi.org/10.1016/j.atmosenv.2003.10.063, 2004.
Claverie, M., Vermote, E. F., Weiss, M., Baret, F., Hagolle, O., and Demarez,
V.: Validation of coarse spatial resolution LAI and FAPAR time series over
cropland in southwest France, Remote Sens. Environ., 139, 216–230,
https://doi.org/10.1016/j.rse.2013.07.027, 2013.
Claverie, M., Matthews, J. L., Vermote, E. F., and Justice, C. O.: A 30 + Year AVHRR LAI and FAPAR Climate Data Record?: Algorithm Description and
Validation, Remote Sens., 8, 1–12, https://doi.org/10.3390/rs8030263, 2016.
Clifton, O. E., Fiore, A. M., Munger, J. W., Malyshev, S., Horowitz, L. W.,
Shevliakova, E., Paulot, F., Murray, L. T., and Griffin, K. L.: Interannual
variability in ozone removal by a temperate deciduous forest, Geophys. Res.
Lett., 44, 542–552, https://doi.org/10.1002/2016GL070923, 2017.
Cook, B. D., Davis, K. J., Wang, W., Desai, A., Berger, B. W., Teclaw, R. M.,
Martin, J. G., Bolstad, P. V., Bakwin, P. S., Yi, C., and Heilman, W.: Carbon
exchange and venting anomalies in an upland deciduous forest in northern
Wisconsin, USA, Agr. Forest Meteorol., 126, 271–295,
https://doi.org/10.1016/j.agrformet.2004.06.008, 2004.
Delpierre, N., Berveiller, D., Granda, E., and Dufrêne, E.: Wood
phenology, not carbon input, controls the interannual variability of wood
growth in a temperate oak forest, New Phytol., 210, 459–470,
https://doi.org/10.1111/nph.13771, 2015.
Desai, A. R., Bolstad, P. V., Cook, B. D., Davis, K. J., and Carey, E. V.:
Comparing net ecosystem exchange of carbon dioxide between an old-growth and
mature forest in the upper Midwest, USA, Agr. Forest Meteorol., 128, 33–55,
https://doi.org/10.1016/j.agrformet.2004.09.005, 2005.
Desai, A. R., Xu, K., Tian, H., Weishampel, P., Thom, J., Baumann, D.,
Andrews, A. E., Cook, B. D., King, J. Y., and Kolka, R.: Landscape-level
terrestrial methane flux observed from a very tall tower, Agr. Forest
Meteorol., 201, 61–75, https://doi.org/10.1016/j.agrformet.2014.10.017, 2015.
Dietiker, D., Buchmann, N., and Eugster, W.: Testing the ability of the DNDC
model to predict CO2 and water vapour fluxes of a Swiss cropland site,
Agr. Ecosyst. Environ., 139, 396–401, https://doi.org/10.1016/j.agee.2010.09.002,
2010.
Dolman, A. J., Moors, E. J., and Elbers, J. A.: The carbon uptake of a mid
latitude pine forest growing on sandy soil, Agr. Forest Meteorol., 111,
157–170, https://doi.org/10.1016/S0168-1923(02)00024-2, 2002.
Dragoni, D., Schmid, H. P., Wayson, C. A., Potter, H., Grimmond, C. S. B.,
and Randolph, J. C.: Evidence of increased net ecosystem productivity
associated with a longer vegetated season in a deciduous forest in
south-central Indiana, USA, Glob. Change Biol., 17, 886–897,
https://doi.org/10.1111/j.1365-2486.2010.02281.x, 2011.
Drake, P. L., Froend, R. H., and Franks, P. J.: Smaller, faster stomata?:
scaling of stomatal size, rate of response, and stomatal conductance, Exp.
Bot., 64, 495–505, https://doi.org/10.1093/jxb/ers347, 2013.
Ducker, J. A., Holmes, C. D., Keenan, T. F., Fares, S., Goldstein, A. H.,
Mammarella, I., Munger, J. W., and Schnell, J.: Synthetic ozone depsoition
and stomatal uptake at flux tower sites, Biogeosciences Discuss.,
https://doi.org/10.5194/bg-2018-172, 2018.
Dušek, J., Čížková, H., Stellner, S., Czerný, R.,
and Květ, J.: Fluctuating water table affects gross ecosystem production
and gross radiation use efficiency in a sedge-grass marsh, Hydrobiologia,
692, 57–66, https://doi.org/10.1007/s10750-012-0998-z, 2012.
El-Madany, T., Niklasch, K., and Klemm, O.: Stomatal and non-stomatal
turbulent deposition flux of ozone to a managed peatland, Atmosphere, 8, p. 175, https://doi.org/10.3390/atmos8090175, 2017.
Etzold, S., Ruehr, N. K., Zweifel, R., Dobbertin, M., Zingg, A., Pluess, P.,
Häsler, R., Eugster, W., and Buchmann, N.: The carbon balance of two
contrasting mountain forest ecosystems in Switzerland: Similar annual
trends, but seasonal differences, Ecosystems, 14, 1289–1309,
https://doi.org/10.1007/s10021-011-9481-3, 2011.
Fares, S., McKay, M., Holzinger, R., and Goldstein, A. H.: Ozone fluxes in a
Pinus ponderosa ecosystem are dominated by non-stomatal processes: Evidence
from long-term continuous measurements, Agr. Forest Meteorol., 150,
420–431, https://doi.org/10.1016/j.agrformet.2010.01.007, 2010.
Fares, S., Vargas, R., Detto, M., Goldstein, A. H., Karlik, J., Paoletti, E.,
and Vitale, M.: Tropospheric ozone reduces carbon assimilation in trees:
Estimates from analysis of continuous flux measurements, Glob. Change Biol.,
19, 2427–2443, doi:10.1111/gcb.12222, 2013.
Fares, S., Savi, F., Muller, J., Matteucci, G., and Paoletti, E.:
Simultaneous measurements of above and below canopy ozone fluxes help
partitioning ozone deposition between its various sinks in a Mediterranean
Oak Forest, Agr. Forest Meteorol., 198/199, 181–191,
https://doi.org/10.1016/j.agrformet.2014.08.014, 2014.
Ferréa, C., Zenone, T., Comolli, R., and Seufert, G.: Estimating
heterotrophic and autotrophic soil respiration in a semi-natural forest of
Lombardy, Italy, Pedobiologia, 55, 285–294,
https://doi.org/10.1016/j.pedobi.2012.05.001, 2012.
Finkelstein, P. L., Ellestad, T. G., Clarke, J. F., Meyers, T. P., Schwede,
D. B., Hebert, E. O., and Neal, J. A.: Ozone and sulfur dioxide dry
deposition to forests: Observations and model evaluation, J. Geophys. Res.-Atmos., 105, 15365–15377, https://doi.org/10.1029/2000JD900185, 2000.
Fischer, M. L., Billesbach, D. P., Berry, J. A., Riley, W. J., and Torn, M.
S.: Spatiotemporal variations in growing season exchanges of CO2,
H2O, and sensible heat in agricultural fields of the Southern Great
Plains, Earth Interact., 11, 1–21, https://doi.org/10.1175/ei231.1, 2007.
Fowler, D., Flechard, C., Cape, J. N., Storeton-West, R. L., and Coyle M.:
Measurements of ozone deposition to vegetation quantifying the flux, the
stomatal and non-stomatal components, Water. Air. Soil Pollut., 130, 63–74,
https://doi.org/10.1023/A:1012243317471, 2001.
Foken, T.: Micrometeorology, 2nd Edn., Springer, 2, 1–326, https://doi.org/10.1007/978-3-642-25440-6, 2017.
Frank, J. M., Massman, W. J., Ewers, B. E., Huckaby, L. S., and Negrón,
J. F.: Ecosystem CO2 ∕ H2O fluxes are explained by
hydraulically limited gas exchange during tree mortality from spruce bark
beetles, J. Geophys. Res.-Biogeo., 119, 1195–1215, https://doi.org/10.1002/2013jg002597,
2014.
Fuhrer, J.: Introduction to the special issue on ozone risk analysis for
vegetation in Europe, Environ. Pollut., 109, 359–360, 2000.
Fuhrer, J., Skärby, L., and Ashmore, M. R.: Critical levels for ozone
effects on vegetation in Europe, Environ. Pollut., 97, 91–106,
https://doi.org/10.1016/S0269-7491(97)00067-5, 1997.
Galvagno, M., Wohlfahrt, G., Cremonese, E., Rossini, M., Colombo, R.,
Filippa, G., Julitta, T., Manca, G., Siniscalco, C., di Cella, U. M., and
Migliavacca, M.: Phenology and carbon dioxide source/sink strength of a
subalpine grassland in response to an exceptionally short snow season,
Environ. Res. Lett., 8, 25008, https://doi.org/10.1088/1748-9326/8/2/025008, 2013.
Garbulsky, M. F., Penuelas, J., Papale, D., and Filella, I.: Remote
estimation of carbon dioxide uptake by a Mediterranean forest, Glob. Change
Biol., 14, 2860–2867, https://doi.org/10.1111/j.1365-2486.2008.01684.x, 2008.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da
Silva, A. M., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert,
S. D., Sienkiewicz, M., and Zhao, B.: The modern-era retrospective analysis
for research and applications, version 2 (MERRA-2), J. Clim., 30, 5419–5454,
https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gentine, P., Chhang, A., Rigden, A., and Salvucci, G.: Evaporation estimates
using weather station data and boundary layer theory, Geophys. Res. Lett.,
43, 661–670, https://doi.org/10.1002/2016GL070819, 2016.
Gerosa, G., Marzuoli, R., Cieslik, S., and Ballarin-Denti, A.: Stomatal ozone
fluxes over a barley field in Italy, “Effective exposure” as a possible
link between exposure- and flux-based approaches, Atmos. Environ., 38,
2421–2432, https://doi.org/10.1016/j.atmosenv.2003.12.040, 2004.
Gerosa, G., Vitale, M., Finco, A., Manes, F., Denti, A. B., and Cieslik, S.:
Ozone uptake by an evergreen Mediterranean Forest (Quercus ilex) in Italy.
Part I: Micrometeorological flux measurements and flux partitioning, Atmos.
Environ., 39, 3255–3266, https://doi.org/10.1016/j.atmosenv.2005.01.056, 2005.
Gerosa, G., Derghi, F., and Cieslik, S.: Comparison of different algorithms
for stomatal ozone flux determination from micrometeorological measurements,
Water. Air. Soil Pollut., 179, 309–321, https://doi.org/10.1007/s11270-006-9234-7, 2007.
Goldstein, A. H., Hultman, N. E., Fracheboud, J. M., Bauer, M. R., Panek, J.
A., Xu, M., Qi, Y., Guenther, A. B., and Baugh, W.: Effects of climate
variability on the carbon dioxide, water, and sensible heat fluxes above a
ponderosa pine plantation in the Sierra Nevada (CA), Agr. Forest Meteorol.,
101, 113–129, https://doi.org/10.1016/S0168-1923(99)00168-9, 2000.
Gough, C. M., Hardiman, B. S., Nave, L. E., Bohrer, G., Maurer, K. D., Vogel,
C. S., Nadelhoffer, K. J., and Curtis, P. S.: Sustained carbon uptake and
storage following moderate disturbance in a Great Lakes forest, Ecol. Appl.,
23, 1202–1215, https://doi.org/10.1890/12-1554.1, 2013.
Grünwald, T. and Bernhofer, C.: A decade of carbon, water and energy flux
measurements of an old spruce forest at the Anchor Station Tharandt, Tellus
B, 59, 387–396,
https://doi.org/10.3402/tellusb.v59i3.17000, 2007.
Guidi, L., Nali, C., Lorenzini, G., Filippi, F., and Soldatini, G. F.: Effect
of chronic ozone fumigation on the photosynthetic process of poplar clones
showing different sensitivity, Environ. Pollut., 113, 245–254,
https://doi.org/10.1016/S0269-7491(00)00194-9, 2001.
Hardacre, C., Wild, O., and Emberson, L.: An evaluation of ozone dry
deposition in global scale chemistry climate models, Atmos. Chem. Phys., 15,
6419–6436, https://doi.org/10.5194/acp-15-6419-2015, 2015.
Hatala, J. A., Detto, M., Sonnentag, O., Deverel, S. J., Verfaillie, J., and
Baldocchi, D. D.: Greenhouse gas (CO2, CH4, H2O)
fluxes from drained and flooded agricultural peatlands in the Sacramento-San
Joaquin Delta, Agr. Ecosyst. Environ., 150, 1–18,
https://doi.org/10.1016/j.agee.2012.01.009, 2012.
Holtslag, A. A. M. and De Bruin, H. A. R.: Applied modeling of the nighttime
surface energy balance over land, J. Appl. Meteorol., 27, 689–704,
https://doi.org/10.1175/1520-0450(1988)027<0689:AMOTNS>2.0.CO;2, 1988.
Hommeltenberg, J., Schmid, H. P., Drösler, M., and Werle, P.: Can a bog
drained for forestry be a stronger carbon sink than a natural bog forest?,
Biogeosciences, 11, 3477–3493, https://doi.org/10.5194/bg-11-3477-2014, 2014.
Hoshika, Y., Katata, G., Deushi, M., Watanabe, M., Koike, T., and Paoletti,
E.: Ozone-induced stomatal sluggishness changes carbon and water balance of
temperate deciduous forests, Sci. Rep., 5, 9871, https://doi.org/10.1038/srep09871, 2015.
Imer, D., Merbold, L., Eugster, W., and Buchmann, N.: Temporal and spatial
variations of soil CO2, CH4 and N2O fluxes at three
differently managed grasslands, Biogeosciences, 10, 5931–5945,
https://doi.org/10.5194/bg-10-5931-2013, 2013.
Irvine, J., Law, B. E., and Hibbard, K. A.: Postfire carbon pools and fluxes
in semiarid ponderosa pine in Central Oregon, Glob. Change Biol., 13,
1748–1760, https://doi.org/10.1111/j.1365-2486.2007.01368.x, 2007.
Irvine, J., Law, B. E., Martin, J. G., and Vickers, D.: Interannual variation
in soil CO2 efflux and the response of root respiration to climate
and canopy gas exchange in mature ponderosa pine, Glob. Change Biol., 14,
2848–2859, https://doi.org/10.1111/j.1365-2486.2008.01682.x, 2008.
Jacobs, C. M. J., Jacobs, A. F. G., Bosveld, F. C., Hendriks, D. M. D.,
Hensen, A., Kroon, P. S., Moors, E. J., Nol, L., Schrier-Uijl, A., and
Veenendaal, E. M.: Variability of annual CO2 exchange from Dutch grasslands,
Biogeosciences, 4, 803–816, https://doi.org/10.5194/bg-4-803-2007, 2007.
Jacobson, M. Z.: Fundamentals of atmospheric modeling second edition,
Cambridge University Press, 1–707, 2005.
Karlsson, P. E., Uddling, J., Braun, S., Broadmeadow, M., Elvira, S., Gimeno,
B. S., Le Thiec, D., Oksanen, E., Vandermeiren, K., Wilkinson, M., and
Emberson, L.: New critical levels for ozone effects on young trees based on
AOT40 and simulated cumulative leaf uptake of ozone, Atmos. Environ., 38,
2283–2294, https://doi.org/10.1016/j.atmosenv.2004.01.027, 2004.
Kavassalis, S. C. and Murphy, J. G.: Understanding ozone-meteorology
correlations: A role for dry deposition, Geophys. Res. Lett., 44, 2922–2931,
https://doi.org/10.1002/2016GL071791, 2017.
Keronen, P., Reissell, A., Rannik, Ü., Pohja, T., Siivola, E., Hiltunen,
V., Hari, P., Kulmala, M., and Vesala, T.: Ozone flux measurements over a
Scots pine forest using eddy covariance method: Performance evaluation and
comparison with flux-profile method, Boreal Environ. Res., 8, 425–443, 2003.
Knauer, J., Zaehle, S., Medlyn, B. E., Reichstein, M., Werner, C., Keitel,
C., Williams, C. A., Migliavacca, M., Kauwe, M. G. De, Kolari, P., Limousin,
J.-M., and Linderson, M.-L.: Towards physiologically meaningful water-use
efficiency estimates from eddy covariance data, Glob. Change Biol., 15, 694–710,
https://doi.org/10.1111/gcb.13893, 2017.
Knohl, A., Schulze, E.-D., Kolle, O., and Buchmann, N.: Large carbon uptake
by an unmanaged 250-year-old deciduous forest in Central Germany, Agr. Forest
Meteorol., 118, 151–167, https://doi.org/10.1016/s0168-1923(03)00115-1, 2003.
Knox, S. H., Matthes, J. H., Sturtevant, C., Oikawa, P. Y., Verfaillie, J.,
and Baldocchi, D.: Biophysical controls on interannual variability in
ecosystem-scale CO2 and CH4 exchange in a California rice
paddy, J. Geophys. Res.-Biogeo., 121, 978–1001, https://doi.org/10.1002/2015jg003247,
2016.
Kurbatova, J., Li, C., Varlagin, A., Xiao, X., and Vygodskaya, N.: Modeling
carbon dynamics in two adjacent spruce forests with different soil conditions
in Russia, Biogeosciences, 5, 969–980, https://doi.org/10.5194/bg-5-969-2008, 2008.
Kurpius, M. R. and Goldstein, A. H.: Gas-phase chemistry dominates O3
loss to a forest, implying a source of aerosols and hydroxyl radicals to the
atmosphere, Geophys. Res. Lett., 30, 2–5, https://doi.org/10.1029/2002GL016785, 2003.
Lamaud, E., Loubet, B., Irvine, M., Stella, P., Personne, E., and Cellier,
P.: Partitioning of ozone deposition over a developed maize crop between
stomatal and non-stomatal uptakes, using eddy-covariance flux measurements
and modelling, Agr. Forest Meteorol., 149, 1385–1396,
https://doi.org/10.1016/j.agrformet.2009.03.017, 2009.
Launiainen, S., Rinne, J., Pumpanen, J., Kulmala, L., Kolari, P., Keronen,
P., Siivola, E., Pohja, T., Hari, P., and Vesala, T.: Eddy covariance
measurements of CO2 and sensible and latent heat fluxes during a full
year in a boreal pine forest trunk-space, Boreal Environ. Res., 10, 569–588,
2005.
Lefohn, A. S. and Runeckles, V. C.: Establishing standards to protect
vegetation-ozone exposure/dose considerations, Atmos. Environ., 21, 561–568,
https://doi.org/10.1016/0004-6981(87)90038-2, 1987.
Lin, C., Gentine, P., Huang, Y., Guan, K., Kimm, H., and Zhou, S.: Diel
ecosystem conductance response to vapor pressure deficit is suboptimal and
independent of soil moisture, Agr. Forest Meteorol., 250/251, 24–34,
https://doi.org/10.1016/j.agrformet.2017.12.078, 2018.
Lindauer, M., Schmid, H. P., Grote, R., Mauder, M., Steinbrecher, R., and
Wolpert, B.: Net ecosystem exchange over a non-cleared wind-throw-disturbed
upland spruce forest – Measurements and simulations, Agr. Forest Meteorol.,
197, 219–234, https://doi.org/10.1016/j.agrformet.2014.07.005, 2014.
Lohila, A.: Annual CO2 exchange of a peat field growing spring barley
or perennial forage grass, J. Geophys. Res., 109, D18116,
https://doi.org/10.1029/2004jd004715, 2004.
Lombardozzi, D., Sparks, J. P., Bonan, G., and Levis, S.: Ozone exposure
causes a decoupling of conductance and photosynthesis: Implications for the
Ball-Berry stomatal conductance model, Oecologia, 169, 651–659,
https://doi.org/10.1007/s00442-011-2242-3, 2012.
Lombardozzi, D., Sparks, J. P., and Bonan, G.: Integrating O3
influences on terrestrial processes: photosynthetic and stomatal response
data available for regional and global modeling, Biogeosciences, 10,
6815–6831, https://doi.org/10.5194/bg-10-6815-2013, 2013.
Lombardozzi, D., Levis, S., Bonan, G., Hess, P. G., and Sparks, J. P.: The
influence of chronic ozone exposure on global carbon and water cycles, J.
Clim., 28, 292–305, https://doi.org/10.1175/JCLI-D-14-00223.1, 2015.
Loubet, B., Laville, P., Lehuger, S., Larmanou, E., Fléchard, C.,
Mascher, N., Genermont, S., Roche, R., Ferrara, R. M., Stella, P., Personne,
E., Durand, B., Decuq, C., Flura, D., Masson, S., Fanucci, O., Rampon, J.-N.,
Siemens, J., Kindler, R., Gabrielle, B., Schrumpf, M., and Cellier, P.:
Carbon, nitrogen and Greenhouse gases budgets over a four years crop rotation
in northern France, Plant Soil, 343, 109–137, https://doi.org/10.1007/s11104-011-0751-9,
2011.
Ma, S., Baldocchi, D. D., Xu, L., and Hehn, T.: Inter-annual variability in
carbon dioxide exchange of an oak/grass savanna and open grassland in
California, Agr. Forest Meteorol., 147, 157–171,
https://doi.org/10.1016/j.agrformet.2007.07.008, 2007.
Mammarella, I., Kolari, P., Rinne, J., Keronen, P., Pumpanen, J., and Vesala,
T.: Determining the contribution of vertical advection to the net ecosystem
exchange at Hyytiälä forest, Finland, Tellus B, 59, 900–909,
https://doi.org/10.1111/j.1600-0889.2007.00306.x, 2007.
Marcolla, B., Pitacco, A., and Cescatti, A.: Canopy architecture and
turbulence structure in a coniferous forest, Bound.-Lay. Meteorol., 108,
39–59, https://doi.org/10.1023/a:1023027709805, 2003.
Marcolla, B., Cescatti, A., Manca, G., Zorer, R., Cavagna, M., Fiora, A.,
Gianelle, D., Rodeghiero, M., Sottocornola, M., and Zampedri, R.: Climatic
controls and ecosystem responses drive the inter-annual variability of the
net ecosystem exchange of an alpine meadow, Agr. Forest Meteorol., 151,
1233–1243, https://doi.org/10.1016/j.agrformet.2011.04.015, 2011.
Marrero, T. R. and Mason, E. A.: Gaseous Diffusion Coefficients, J. Phys.
Chem. Ref. Data, 1, 3–118, https://doi.org/10.1063/1.3253094, 1972.
Matthes, J. H., Sturtevant, C., Verfaillie, J., Knox, S., and Baldocchi, D.:
Parsing the variability in CH4 flux at a spatially heterogeneous wetland:
Integrating multiple eddy covariance towers with high-resolution flux
footprint analysis, J. Geophys. Res.-Biogeo., 119, 1322–1339,
https://doi.org/10.1002/2014jg002642, 2014.
Matyssek, R., Bahnweg, G., Ceulemans, R., Fabian, P., Grill, D., Hanke, D.
E., Kraigher, H., Oßwald, W., Rennenberg, H., Sandermann, H., Tausz, M.,
and Wieser, G.: Synopsis of the CASIROZ case study: Carbon sink strength of
Fagus sylvatica L. in a changing environment – Experimental risk
assessment of mitigation by chronic ozone impact, Plant Biol., 9, 163–180,
https://doi.org/10.1055/s-2007-964883, 2007.
Matyssek, R., Karnosky, D. F., Wieser, G., Percy, K., Oksanen, E., Grams, T.
E. E., Kubiske, M., Hanke, D., and Pretzsch, H.: Advances in understanding
ozone impact on forest trees: Messages from novel phytotron and free-air
fumigation studies, Environ. Pollut., 158, 1990–2006,
https://doi.org/10.1016/j.envpol.2009.11.033, 2010.
Mauder, M., Cuntz, M., Drüe, C., Graf, A., Rebmann, C., Schmid, H. P.,
Schmidt, M., and Steinbrecher, R.: A strategy for quality and uncertainty
assessment of long-term eddy-covariance measurements, Agr. Forest Meteorol.,
169, 122–135, https://doi.org/10.1016/j.agrformet.2012.09.006, 2013.
McKinney, W.: Data Structures for Statistical Computing in Python, in:
Proceedings of the 9th Python in Science Conference, edited by: Van Der Walt,
S., 51–56., 2010.
Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C.,
Barton, C. V. M., Crous, K. Y., De Angelis, P., Freeman, M., and Wingate, L.:
Reconciling the optimal and empirical approaches to modelling stomatal
conductance, Glob. Change Biol., 17, 2134–2144,
https://doi.org/10.1111/j.1365-2486.2010.02375.x, 2011.
Merbold, L., Eugster, W., Stieger, J., Zahniser, M., Nelson, D., and
Buchmann, N.: Greenhouse gas budget (CO2, CH4, and
N2O) of intensively managed grassland following restoration, Glob.
Change Biol., 20, 1913–1928, https://doi.org/10.1111/gcb.12518, 2014.
Migliavacca, M., Meroni, M., Busetto, L., Colombo, R., Zenone, T., Matteucci,
G., Manca, G., and Seufert, G.: Modeling gross primary production of
agro-forestry ecosystems by assimilation of satellite-derived information in
a process-based model, Sensors, 9, 922–942, https://doi.org/10.3390/s90200922, 2009.
Mills, G., Hayes, F., Simpson, D., Emberson, L., Norris, D., Harmens, H., and
Büker, P.: Evidence of widespread effects of ozone on crops and
(semi-)natural vegetation in Europe (1990–2006) in relation to AOT40- and
flux-based risk maps, Glob. Change Biol., 17, 592–613,
https://doi.org/10.1111/j.1365-2486.2010.02217.x, 2011.
Monson, R. K., Turnipseed, A. A., Sparks, J. P., Harley, P. C., Scott-Denton,
L. E., Sparks, K., and Huxman, T. E.: Carbon sequestration in a
high-elevation, subalpine forest, Glob. Change Biol., 8, 459–478,
https://doi.org/10.1046/j.1365-2486.2002.00480.x, 2002.
Montagnani, L., Manca, G., Canepa, E., Georgieva, E., Acosta, M.,
Feigenwinter, C., Janous, D., Kerschbaumer, G., Lindroth, A., Minach, L.,
Minerbi, S., Mölder, M., Pavelka, M., Seufert, G., Zeri, M., and Ziegler,
W.: A new mass conservation approach to the study of CO2 advection in
an alpine forest, J. Geophys. Res., 114, D07306, https://doi.org/10.1029/2008jd010650,
2009.
Monteith, J. L.: Evaporation and surface temperature, Q. J. Roy. Meteor.
Soc., 107, 1–27, 1981.
Moore, K. E., Fitzjarrald, D. R., Sakai, R. K., Goulden, M. L., Munger, J.
W., and Wofsy, S. C.: Seasonal variation in radiative and turbulent exchange
at a deciduous forest in central Massachusetts, J. Appl. Meterol., 35,
122–134, https://doi.org/10.1175/1520-0450(1996)035<0122:SVIRAT>2.0.CO;2, 1996.
Morin, T. H., Bohrer, G. D. M., Frasson, R. P., Naor-Azreli, L., Mesi, S.,
Stefanik, K. C., and Schäfer, K. V. R.: Environmental drivers of methane
fluxes from an urban temperate wetland park, J. Geophys. Res.-Biogeo., 119,
2188–2208, https://doi.org/10.1002/2014jg002750, 2014.
Moureaux, C., Debacq, A., Bodson, B., Heinesch, B., and Aubinet, M.: Annual
net ecosystem carbon exchange by a sugar beet crop, Agr. Forest Meteorol.,
139, 25–39, https://doi.org/10.1016/j.agrformet.2006.05.009, 2006.
Munger, J. W., Wofsy, S. C., Bakwin, P. S., Fan, S., Goulden, M. L., Daube,
B. C., Goldstein, A. H., Moore, K. E., and Fitzjarrald, D. R.: Atmospheric
deposition of reactive nitrogen oxides and ozaone in a temperate deciduos
forest and a subartic woodland 1. Measurements and mechanisms, J. Geophys.
Res., 101, 12639–12657, 1996.
Musselman, R. C., Lefohn, A. S., Massman, W. J., and Heath, R. L.: A critical
review and analysis of the use of exposure- and flux-based ozone indices for
predicting vegetation effects, Atmos. Environ., 40, 1869–1888,
https://doi.org/10.1016/j.atmosenv.2005.10.064, 2006.
Noormets, A., Chen, J., and Crow, T. R.: Age-Dependent Changes in Ecosystem
Carbon Fluxes in Managed Forests in Northern Wisconsin, USA, Ecosystems, 10,
187–203, https://doi.org/10.1007/s10021-007-9018-y, 2007.
Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G.,
Oishi, A. C., Papuga, S. A., Blanken, P. D., Noormets, A., Sulman, B. N.,
Scott, R. L., Wang, L., and Phillips, R. P.: The increasing importance of
atmospheric demand for ecosystem water and carbon fluxes, Nat. Clim. Change,
6, 1023–1027, https://doi.org/10.1038/nclimate3114, 2016.
Oikawa, P. Y., Jenerette, G. D., Knox, S. H., Sturtevant, C., Verfaillie, J.,
Dronova, I., Poindexter, C. M., Eichelmann, E., and Baldocchi, D. D.:
Evaluation of a hierarchy of models reveals importance of substrate
limitation for predicting carbon dioxide and methane exchange in restored
wetlands, J. Geophys. Res.-Biogeo., 122, 145–167, https://doi.org/10.1002/2016jg003438,
2017.
Paoletti, E. and Manning, W. J.: Toward a biologically significant and usable
standard for ozone that will also protect plants, Environ. Pollut., 150,
85–95, https://doi.org/10.1016/j.envpol.2007.06.037, 2007.
Papale, D., Migliavacca, M., Cremonese, E., Cescatti, A., Alberti, G.,
Balzarolo, M., Marchesini, L. B., Canfora, E., Casa, R., Duce, P., Facini,
O., Galvagno, M., Genesio, L., Gianelle, D., Magliulo, V., Matteucci, G.,
Montagnani, L., Petrella, F., Pitacco, A., Seufert, G., Spano, D., Stefani,
P., Vaccari, F. P., and Valentini, R.: Carbon, water and anergy fluxes of
terrestrial ecosystems in Italy, in The Greenhouse Gas Balance of Italy,
Springer, Berlin Heidelberg, 11–45, 2015.
Pastorello, G., Agarwal, D., Papale, D., Samak, T., Trotta, C., Ribeca, A.,
Poindexter, C., Faybishenko, B., Gunter, D., Hollowgrass, R., and Canfora,
E.: Observational data patterns for time series data quality assessment, 2014
IEEE 10th Int. Conf. e-Science, 271–278, https://doi.org/10.1109/eScience.2014.45, 2014.
Pastorello, G., Papale, D., Chu, H., Trotta, C., Agarwal, D., Canfora, E.,
Baldocchi, D., and Torn, M.: A new data set to keep a sharper eye on land-air
exchanges, Eos, 98,
https://doi.org/10.1029/2017EO071597, 2017.
Plake, D., Stella, P., Moravek, A., Mayer, J. C., Ammann, C., Held, A., and
Trebs, I.: Comparison of ozone deposition measured with the dynamic chamber
and the eddy covariance method, Agr. Forest Meteorol., 206, 97–112,
https://doi.org/10.1016/j.agrformet.2015.02.014, 2015.
Pleijel, H., Danielsson, H., Ojanperä, K., De Temmerman, L., Högy,
P., Badiani, M., and Karlsson, P. E.: Relationships between ozone exposure
and yield loss in European wheat and potato – A comparison of concentration-
and flux-based exposure indices, Atmos. Environ., 38, 2259–2269,
https://doi.org/10.1016/j.atmosenv.2003.09.076, 2004.
Pleijel, H., Danielsson, H., Simpson, D., and Mills, G.: Have ozone effects
on carbon sequestration been overestimated? A new biomass response function
for wheat, Biogeosciences, 11, 4521–4528, https://doi.org/10.5194/bg-11-4521-2014, 2014.
Pilegaard, K., Ibrom, A., Courtney, M. S., Hummelshøj, P., and Jensen, N.
O.: Increasing net CO2 uptake by a Danish beech forest during the
period from 1996 to 2009, Agr. Forest Meteorol., 151, 934–946,
https://doi.org/10.1016/j.agrformet.2011.02.013, 2011.
Post, H., Franssen, H. J. H., Graf, A., Schmidt, M., and Vereecken, H.:
Uncertainty analysis of eddy covariance CO2 flux measurements for
different EC tower distances using an extended two-tower approach,
Biogeosciences, 12, 1205–1221, https://doi.org/10.5194/bg-12-1205-2015, 2015.
Powell, T. L., Bracho, R., Li, J., Dore, S., Hinkle, C. R., and Drake, B. G.:
Environmental controls over net ecosystem carbon exchange of scrub oak in
central Florida, Agr. Forest Meteorol., 141, 19–34,
https://doi.org/10.1016/j.agrformet.2006.09.002, 2006.
Prescher, A.-K., Grünwald, T., and Bernhofer, C.: Land use regulates
carbon budgets in eastern Germany: From NEE to NBP, Agr. Forest Meteorol.,
150, 1016–1025, https://doi.org/10.1016/j.agrformet.2010.03.008, 2010.
Rambal, S., Joffre, R., Ourcival, J. M., Cavender-Bares, J., and Rocheteau,
A.: The growth respiration component in eddy CO2 flux from a Quercus
ilex mediterranean forest, Glob. Change Biol., 10, 1460–1469,
https://doi.org/10.1111/j.1365-2486.2004.00819.x, 2004.
Rannik, Ü., Mammarella, I., Keronen, P., and Vesala, T.: Vertical
advection and nocturnal deposition of ozone over a boreal pine forest, Atmos.
Chem. Phys., 9, 2089–2095, https://doi.org/10.5194/acp-9-2089-2009, 2009.
Rannik, Ü., Altimir, N., Mammarella, I., Bäck, J., Rinne, J.,
Ruuskanen, T. M., Hari, P., Vesala, T., and Kulmala, M.: Ozone deposition
into a boreal forest over a decade of observations: Evaluating deposition
partitioning and driving variables, Atmos. Chem. Phys., 12, 12165–12182,
https://doi.org/10.5194/acp-12-12165-2012, 2012.
Raz-Yaseef, N., Billesbach, D. P., Fischer, M. L., Biraud, S. C., Gunter, S.
A., Bradford, J. A., and Torn, M. S.: Vulnerability of crops and native
grasses to summer drying in the U.S. Southern Great Plains, Agr. Ecosyst.
Environ., 213, 209–218, https://doi.org/10.1016/j.agee.2015.07.021, 2015.
Reda, I. and Andreas, A.: Solar position algorithm for solar radiation
applications, Sol. Energ., 76, 577–589, https://doi.org/10.1016/j.solener.2003.12.003,
2004.
Reich, P. B.: Quantifying plant response to ozone: A unifying theory, Tree
Physiol., 3, 63–91, https://doi.org/10.1093/treephys/3.1.63, 1987.
Reich, P. B. and Amundson, R. G.: Ambient levels of ozone reduce net
photosynthesis in tree and crop species, Science, 230, 566–570, 1985.
Reich, P. B. and Lassoie, J. P.: Effects of low level O3 exposure on
leaf diffusive conductance and water-use efficiency in hybrid poplar, Plant.
Cell Environ., 7, 661–668, https://doi.org/10.1111/1365-3040.ep11571645, 1984.
Reichle, R., Draper, C., Liu, Q., Girotto, M., Mahanama, S., Koster, R., and
Lannoy, G.: Assessment of MERRA-2 Land Surface Hydrology Estimates, Am.
Meteorol. Soc. J. Clim., 30, 2937–2960, https://doi.org/10.1175/JCLI-D-16-0720.1, 2017.
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier,
P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grünwald, T.,
Havránková, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T.,
Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival,
J. M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J.,
Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.: On the
separation of net ecosystem exchange into assimilation and ecosystem
respiration: Review and improved algorithm, Glob. Change Biol., 11,
1424–1439, https://doi.org/10.1111/j.1365-2486.2005.001002.x, 2005.
Reverter, B. R., Sánchez-Cañete, E. P., Resco, V., Serrano-Ortiz, P.,
Oyonarte, C., and Kowalski, A. S.: Analyzing the major drivers of NEE in a
Mediterranean alpine shrubland, Biogeosciences, 7, 2601–2611,
https://doi.org/10.5194/bg-7-2601-2010, 2010.
Rey, A., Pegoraro, E., Tedeschi, V., Parri, I. De, Jarvis, P. G., and
Valentini, R.: Annual variation in soil respiration and its components in a
coppice oak forest in Central Italy, Glob. Change Biol., 8, 851–866,
https://doi.org/10.1046/j.1365-2486.2002.00521.x, 2002.
Ruehr, N. K., Martin, J. G., and Law, B. E.: Effects of water availability on
carbon and water exchange in a young ponderosa pine forest: Above- and
belowground responses, Agr. Forest Meteorol., 164, 136–148,
https://doi.org/10.1016/j.agrformet.2012.05.015, 2012.
Sabbatini, S., Arriga, N., Bertolini, T., Castaldi, S., Chiti, T., Consalvo,
C., Djomo, S. N., Gioli, B., Matteucci, G., and Papale, D.: Greenhouse gas
balance of cropland conversion to bioenergy poplar short-rotation coppice,
Biogeosciences, 13, 95–113, https://doi.org/10.5194/bg-13-95-2016, 2016.
Schmidt, M., Reichenau, T. G., Fiener, P., and Schneider, K.: The carbon
budget of a winter wheat field: An eddy covariance analysis of seasonal and
inter-annual variability, Agr. Forest Meteorol., 165, 114–126,
https://doi.org/10.1016/j.agrformet.2012.05.012, 2012.
Schnell, J. L., Holmes, C. D., Jangam, A., and Prather, M. J.: Skill in
forecasting extreme ozone pollution episodes with a global atmospheric
chemistry model, Atmos. Chem. Phys., 14, 7721–7739,
https://doi.org/10.5194/acp-14-7721-2014, 2014.
Schwede, D., Zhang, L., Vet, R., and Lear, G.: An intercomparison of the
deposition models used in the CASTNET and CAPMoN networks, Atmos. Environ.,
45, 1337–1346, https://doi.org/10.1016/j.atmosenv.2010.11.050, 2011.
Scott, R. L. and Biederman, J. A.: Partitioning evapotranspiration using
long-term carbon dioxide and water vapor fluxes, Geophys. Res. Lett., 44,
6833–6840, https://doi.org/10.1002/2017GL074324, 2017.
Scott, R. L., Jenerette, G. D., Potts, D. L., and Huxman, T. E.: Effects of
seasonal drought on net carbon dioxide exchange from a woody-plant-encroached
semiarid grassland, J. Geophys. Res., 114, G04004, https://doi.org/10.1029/2008jg000900,
2009.
Scott, R. L., Hamerlynck, E. P., Jenerette, G. D., Moran, M. S., and
Barron-Gafford, G. A.: Carbon dioxide exchange in a semidesert grassland
through drought-induced vegetation change, J. Geophys. Res., 115, G03026,
https://doi.org/10.1029/2010jg001348, 2010.
Scott, R. L., Biederman, J. A., Hamerlynck, E. P., and Barron-Gafford, G. A.:
The carbon balance pivot point of southwestern U.S. semiarid ecosystems:
Insights from the 21st century drought, J. Geophys. Res.-Biogeo., 120,
2612–2624, https://doi.org/10.1002/2015jg003181, 2015.
Seabold, S. and Perktold, J.: Statsmodels: econometric and statistical
modeling with Python, in: Proceedings of the 9th Python in Science
Conference,
57–61,
2010.
Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau,
J. Am. Stat. Assoc., 63, 1379–1389, https://doi.org/10.1080/01621459.1968.10480934,
1968.
Silva, S. J. and Heald, C. L.: Investigating dry deposition of ozone to
vegetation, J. Geophys. Res.-Atmos., 123, 559–573, https://doi.org/10.1002/2017JD027278,
2018.
Sitch, S., Cox, P. M., Collins, W. J., and Huntingford, C.: Indirect
radiative forcing of climate change through ozone effects on the land-carbon
sink, Nature, 448, 791–794, https://doi.org/10.1038/nature06059, 2007.
Stella, P., Personne, E., Loubet, B., Lamaud, E., Ceschia, E., Béziat,
P., Bonnefond, J. M., Irvine, M., Keravec, P., Mascher, N., and Cellier, P.:
Predicting and partitioning ozone fluxes to maize crops from sowing to
harvest: The Surfatm-O3 model, Biogeosciences, 8, 2869–2886,
https://doi.org/10.5194/bg-8-2869-2011, 2011a.
Stella, P., Loubet, B., Lamaud, E., Laville, P., and Cellier, P.: Ozone
deposition onto bare soil?: A new parameterization, Agr. Forest Meteorol.,
151, 669–681, https://doi.org/10.1016/j.agrformet.2011.01.015, 2011b.
Stella, P., Kortner, M., Ammann, C., Foken, T., Meixner, F. X., and Trebs,
I.: Measurements of nitrogen oxides and ozone fluxes by eddy covariance at a
meadow: Evidence for an internal leaf resistance to NO2, Biogeosciences,
10, 5997–6017, https://doi.org/10.5194/bg-10-5997-2013, 2013.
Sulman, B. N., Desai, A. R., Cook, B. D., Saliendra, N., and Mackay, D. S.:
Contrasting carbon dioxide fluxes between a drying shrub wetland in Northern
Wisconsin, USA, and nearby forests, Biogeosciences, 6, 1115–1126,
https://doi.org/10.5194/bg-6-1115-2009, 2009.
Tai, A. P. K., Martin, M. V., and Heald, C. L.: Threat to future global food
security from climate change and ozone air pollution, Nat. Clim. Change, 4,
817–821, https://doi.org/10.1038/nclimate2317, 2014.
Taylor, J. R.: An Introduction to Error Analysis, University Science Books,
Sausalito, 1–327, 1997.
Tedeschi, V., Ret, A., Manca, G., Valentini, R., Jarvis, P. G., and
Borghetti, M.: Soil respiration in a Mediterranean oak forest at different
developmental stages after coppicing, Glob. Change Biol., 12, 110–121,
https://doi.org/10.1111/j.1365-2486.2005.01081.x, 2006.
Thum, T., Aalto, T., Laurila, T., Aurela, M., Kolari, P., and Hari, P.:
Parametrization of two photosynthesis models at the canopy scale in a
northern boreal Scots pine forest, Tellus B, 59, 874–890, https://doi.org/10.3402/tellusb.v59i5.17066, 2007.
UNECE: Revised manual on methodologies and criteria for mapping critical
levels/loads and geographical areas where they are exceeded, in: UNECE
Convention on Long-range Transboundary Air Pollution, 2004.
Urbanski, S., Barford, C., Wofsy, S., Kucharik, C., Pyle, E., Budney, J.,
McKain, K., Fitzjarrald, D., Czikowsky, M., and Munger, J. W.: Factors
controlling CO2 exchange on timescales from hourly to decadal at
Harvard Forest, J. Geophys. Res., 112, G02020, https://doi.org/10.1029/2006jg000293,
2007.
Valentini, R., Angelis, P., Matteucci, G., Monaco, R., Dore, S., and
Mucnozza, G. E. S.: Seasonal net carbon dioxide exchange of a beech forest
with the atmosphere, Glob. Change Biol., 2, 199–207,
https://doi.org/10.1111/j.1365-2486.1996.tb00072.x, 1996.
Van Dingenen, R., Dentener, F. J., Raes, F., Krol, M. C., Emberson, L., and
Cofala, J.: The global impact of ozone on agricultural crop yields under
current and future air quality legislation, Atmos. Environ., 43,
604–618, https://doi.org/10.1016/j.atmosenv.2008.10.033, 2009.
Verma, S. B., Dobermann, A., Cassman, K. G., Walters, D. T., Knops, J. M.,
Arkebauer, T. J., Suyker, A. E., Burba, G. G., Amos, B., Yang, H., Ginting,
D., Hubbard, K. G., Gitelson, A. A., and Walter-Shea, E. A.: Annual carbon
dioxide exchange in irrigated and rainfed maize-based agroecosystems, Agr.
Forest Meteorol., 131, 77–96, https://doi.org/10.1016/j.agrformet.2005.05.003, 2005.
Vitale, L., Tommasi, P. Di, D'Urso, G., and Magliulo, V.: The response of
ecosystem carbon fluxes to LAI and environmental drivers in a maize crop
grown in two contrasting seasons, Int. J. Biometeorol., 60, 411–420,
https://doi.org/10.1007/s00484-015-1038-2, 2015.
Vuichard, N. and Papale, D.: Filling the gaps in meteorological continuous
data measured at FLUXNET sites with ERA-Interim reanalysis, Earth Syst. Sci.
Data, 7, 157–171, https://doi.org/10.5194/essd-7-157-2015, 2015.
Van Der Walt, S., Colbert, S. C., and Varoquaux, G.: The NumPy array: A
structure for efficient numerical computation, Comput. Sci. Eng., 13, 22–30,
https://doi.org/10.1109/MCSE.2011.37, 2011.
Wang, L., Good, S. P., and Caylor, K. K.: Global synthesis of vegetation
control on evapotranspiration partitioning, Geophys. Res. Lett., 41,
6753–6757, https://doi.org/10.1002/2014GL061439, 2014.
Warton, D. I., Wright, I. J., Falster, D. S., and Westoby, M.: Bivariate
line-fitting methods for allometry, Biol. Rev., 81, 259–291,
https://doi.org/10.1017/S1464793106007007, 2006.
Weaver, J. E. and Bruner, W. E.: Root development of vegetable crops,
McGraw-Hill Book Company, Inc., Lincoln, Nebraska, 1927.
Wesely, M. L. and Hicks, B. B.: Some factors that affect the deposition rates
of sulfur dioxide and similar gases on vegetation, J. Air Pollut. Control
Assoc., 27, 1110–1116, https://doi.org/10.1080/00022470.1977.10470534, 1977.
Wesley, M. L.: Parametrization of surface resistance to gaseous dry
deposition in regional-scale numerical model, Atmos. Environ., 23,
1293–1304, 1989.
Wittig, V. E., Ainsworth, E. A., and Long, S. P.: To what extent do current
and projected increases in surface ozone affect photosynthesis and stomatal
conductance of trees? A meta-analytic review of the last 3 decades of
experiments, Plant Cell Environ., 30, 1150–1162,
https://doi.org/10.1111/j.1365-3040.2007.01717.x, 2007.
Wittig, V. E., Ainsworth, E. A., Naidu, S. L., Karnosky, D. F., and Long, S.
P.: Quantifying the impact of current and future tropospheric ozone on tree
biomass, growth, physiology and biochemistry: A quantitative meta-analysis,
Glob. Change Biol., 15, 396–424, https://doi.org/10.1111/j.1365-2486.2008.01774.x, 2009.
Wohlfahrt, G., Hammerle, A., Haslwanter, A., Bahn, M., Tappeiner, U., and
Cernusca, A.: Seasonal and inter-annual variability of the net ecosystem
CO2 exchange of a temperate mountain grassland: Effects of weather
and management, J. Geophys. Res., 113, D08110, https://doi.org/10.1029/2007jd009286,
2008.
Wolfe, G. M., Thornton, J. A., Mckay, M., and Goldstein, A. H.:
Forest-atmosphere exchange of ozone?: sensitivity to very reactive biogenic
VOC emissions and implications for in-canopy photochemistry, Atmos. Chem. Phys., 11, 7875–7891, https://doi.org/10.5194/acp-11-7875-2011,
2011.
Wu, S., Mickley, L. J., Jacob, D. J., Logan, J. A., Yantosca, R. M., and
Rind, D.: Why are there large differences between models in global budgets of
tropospheric ozone?, J. Geophys. Res.-Atmos., 112, D05302,
https://doi.org/10.1029/2006JD007801, 2007.
Wu, Z., Schwede, D. B., Vet, R., Walker, J. T., Shaw, M., Staebler, R., and
Zhang, L.: Evaluation and intercomparison of five North American dry
deposition algorithms at a mixed forest site, J. Adv. Model. Earth Syst.,
10, 1571–1586, https://doi.org/10.1029/2017MS001231, 2018.
Young, P. J., Archibald, A. T., Bowman, K. W., Lamarque, J.-F., Naik, V.,
Stevenson, D. S., Tilmes, S., Voulgarakis, A., Wild, O., Bergmann, D.,
Cameron-Smith, P., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty,
R. M., Eyring, V., Faluvegi, G., Horowitz, L. W., Josse, B., Lee, Y. H.,
MacKenzie, I. A., Nagashima, T., Plummer, D. A., Righi, M., Rumbold, S. T.,
Skeie, R. B., Shindell, D. T., Strode, S. A., Sudo, K., Szopa, S., and Zeng,
G.: Pre-industrial to end 21st century projections of tropospheric ozone from
the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP),
Atmos. Chem. Phys., 13, 2063–2090, https://doi.org/10.5194/acp-13-2063-2013, 2013.
Yue, X. and Unger, N.: Ozone vegetation damage effects on gross primary
productivity in the United States, Atmos. Chem. Phys., 14, 9137–9153,
https://doi.org/10.5194/acp-14-9137-2014, 2014.
Yue, X., Keenan, T. F., Munger, W., and Unger, N.: Limited effect of ozone
reductions on the 20-year photosynthesis trend at Harvard forest, Glob.
Change Biol., 22, 3750–3759, https://doi.org/10.1111/gcb.13300, 2016.
Zeller, K. F. and Nikolov, N. T.: Quantifying simultaneous fluxes of ozone,
carbon dioxide and water vapor above a subalpine forest ecosystem, Environ.
Pollut., 107, 1–20, 2000.
Zhang, L., Brook, J. R. and Vet, R.: On ozone dry deposition – With emphasis
on non-stomatal uptake and wet canopies, Atmos. Environ., 36, 4787–4799,
https://doi.org/10.1016/S1352-2310(02)00567-8, 2002.
Zhang, L., Brook, J. R., and Vet, R.: A revised parameterization for gaseous
dry deposition in air-quality models, Atmos. Chem. Phys., 3, 2067–2082,
https://doi.org/10.5194/acp-3-2067-2003, 2003.
Zhou, S., Yu, B., Huang, Y., and Wang, G.: Partitioning evapotranspiration
based on the concept of underlying water use efficiency, Water Resour. Res.,
52, 1160–1175, https://doi.org/10.1002/2015WR017766, 2016.
Zielis, S., Etzold, S., Zweifel, R., Eugster, W., Haeni, M., and Buchmann,
N.: NEP of a Swiss subalpine forest is significantly driven not only by
current but also by previous years weather, Biogeosciences, 11, 1627–1635,
https://doi.org/10.5194/bg-11-1627-2014, 2014.
Zona, D., Gioli, B., Fares, S., De Groote, T., Pilegaard, K., Ibrom, A., and
Ceulemans, R.: Environmental controls on ozone fluxes in a poplar plantation
in Western Europe, Environ. Pollut., 184, 201–210,
https://doi.org/10.1016/j.envpol.2013.08.032, 2014.
Short summary
We have developed an accurate method (SynFlux) to estimate ozone deposition and stomatal uptake across 103 flux tower sites (43 US, 60 Europe), where ozone concentrations and fluxes have not been measured. In all, the SynFlux public dataset provides monthly values of ozone dry deposition for 926 site years across a wide array of ecosystems. The SynFlux dataset will promote further applications to ecosystem, air quality, or climate modeling across the geoscience community.
We have developed an accurate method (SynFlux) to estimate ozone deposition and stomatal uptake...
Altmetrics
Final-revised paper
Preprint