Articles | Volume 17, issue 4
https://doi.org/10.5194/bg-17-1033-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-1033-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimating causal networks in biosphere–atmosphere interaction with the PCMCI approach
Max Planck Institute for Biogeochemistry, 07745 Jena, Germany
Laboratory of Hydrology and Water Management, Ghent University, Ghent 9000, Belgium
Jakob Runge
German Aerospace Center, Institute of Data Science, 07745 Jena, Germany
Diego G. Miralles
Laboratory of Hydrology and Water Management, Ghent University, Ghent 9000, Belgium
Mirco Migliavacca
Max Planck Institute for Biogeochemistry, 07745 Jena, Germany
Oscar Perez-Priego
Max Planck Institute for Biogeochemistry, 07745 Jena, Germany
Tarek El-Madany
Max Planck Institute for Biogeochemistry, 07745 Jena, Germany
Arnaud Carrara
Fundación Centro de Estudios Ambientales del Mediterráneo (CEAM), 46980 Paterna, Spain
Miguel D. Mahecha
Max Planck Institute for Biogeochemistry, 07745 Jena, Germany
German Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e, 04103 Leipzig, Germany
Related authors
Christopher Krich, Mirco Migliavacca, Diego G. Miralles, Guido Kraemer, Tarek S. El-Madany, Markus Reichstein, Jakob Runge, and Miguel D. Mahecha
Biogeosciences, 18, 2379–2404, https://doi.org/10.5194/bg-18-2379-2021, https://doi.org/10.5194/bg-18-2379-2021, 2021
Short summary
Short summary
Ecosystems and the atmosphere interact with each other. These interactions determine e.g. the water and carbon fluxes and thus are crucial to understand climate change effects. We analysed the interactions for many ecosystems across the globe, showing that very different ecosystems can have similar interactions with the atmosphere. Meteorological conditions seem to be the strongest interaction-shaping factor. This means that common principles can be identified to describe ecosystem behaviour.
Maximilian Söchting and Miguel D. Mahecha
EGUsphere, https://doi.org/10.5194/egusphere-2025-5632, https://doi.org/10.5194/egusphere-2025-5632, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
As the amount of data collected by satellites and generated by climate models to monitor Earth's climate and environment continues to expand in size and complexity, it becomes increasingly difficult for non-experts to explore these type of data sets. We present an interactive physical exhibit in the shape of a cube that enables anyone to explore these large environmental data sets across space, time, and variables, independent of their technical knowledge, through direct physical interaction.
Mélanie Weynants, Chaonan Ji, Nora Linscheid, Ulrich Weber, Miguel D. Mahecha, and Fabian Gans
Earth Syst. Sci. Data, 17, 6621–6645, https://doi.org/10.5194/essd-17-6621-2025, https://doi.org/10.5194/essd-17-6621-2025, 2025
Short summary
Short summary
The impacts of climate extremes such as heatwaves and droughts can be made worse when they happen at the same time. Dheed is a global database of dry and hot compound extreme events from 1950 to 2023. It can be combined with other data to study the impacts of those events on terrestrial ecosystems, specific species or human societies. Dheed's analysis confirms that extremely dry and hot days have become more common on all continents in recent decades, especially in Europe and Africa.
Javier Pacheco-Labrador, Ulisse Gomarasca, Daniel E. Pabon-Moreno, Wantong Li, Mirco Migliavacca, Martin Jung, and Gregory Duveiller
Geosci. Model Dev., 18, 8401–8422, https://doi.org/10.5194/gmd-18-8401-2025, https://doi.org/10.5194/gmd-18-8401-2025, 2025
Short summary
Short summary
Measuring biodiversity is necessary to assess its loss, evolution, and role in ecosystem functions. Satellites image the whole terrestrial surface and could cost-efficiently map plant diversity globally. However, developing the necessary methods lacks consistent and sufficient field measurements. Thus, we propose using a simulation tool that generates virtual ecosystems, with species properties and functions varying in response to meteorology and the respective remote sensing imagery.
Tea Thum, Javier Pacheco-Labrador, Mika Aurela, Alan Barr, Marika Honkanen, Bruce Johnson, Hannakaisa Lindqvist, Troy Magney, Mirco Migliavacca, Zoe Amie Pierrat, Tristan Quaife, Jochen Stutz, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2025-4432, https://doi.org/10.5194/egusphere-2025-4432, 2025
Short summary
Short summary
Solar-induced chlorophyll fluorescence (SIF) is an optical signal emitted by plants, connected to the biochemical status of the plants. Therefore it helps to unveil what happens inside plants and since it can be observed with remote sensing, it provides a global view of plant activity. We included SIF module in a terrestrial biosphere model and examined how to best describe movement of the SIF signal in the forest. Our work will help to model SIF in boreal coniferous forests.
Josephin Kroll, Ruth Stephan, Andrew F. Feldman, Diego G. Miralles, and Rene Orth
EGUsphere, https://doi.org/10.5194/egusphere-2025-4391, https://doi.org/10.5194/egusphere-2025-4391, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
In this study, we investigate contributors to and trends in the co-occurrence of heat and dryness. We find radiation, representing the atmospheric forcing, inducing high temperatures during dryness. For the persistence of heat, evaporation as the land contribution and the consequent effect on sensible heat flux becomes more important. While the co-occurrence of high temperatures and dryness shows a strong increase over 1980–2010, the atmospheric and land contributions show no clear trend.
Laura Nadolski, Tarek S. El-Madany, Jacob Nelson, Arnaud Carrara, Gerardo Moreno, Richard Nair, Yunpeng Luo, Anke Hildebrandt, Victor Rolo, Markus Reichstein, and Sung-Ching Lee
Biogeosciences, 22, 2935–2958, https://doi.org/10.5194/bg-22-2935-2025, https://doi.org/10.5194/bg-22-2935-2025, 2025
Short summary
Short summary
Semi-arid ecosystems are crucial for Earth's carbon balance and are sensitive to changes in nitrogen (N) and phosphorus (P) levels. Their carbon dynamics are complex and not fully understood. We studied how long-term nutrient changes affect carbon exchange. In summer, the addition of N+P changed plant composition and productivity. In transitional seasons, carbon exchange was less weather-dependent with N. The addition of N and N+P increases carbon-exchange variability, driven by grass greenness.
Friedrich J. Bohn, Ana Bastos, Romina Martin, Anja Rammig, Niak Sian Koh, Giles B. Sioen, Bram Buscher, Louise Carver, Fabrice DeClerck, Moritz Drupp, Robert Fletcher, Matthew Forrest, Alexandros Gasparatos, Alex Godoy-Faúndez, Gregor Hagedorn, Martin C. Hänsel, Jessica Hetzer, Thomas Hickler, Cornelia B. Krug, Stasja Koot, Xiuzhen Li, Amy Luers, Shelby Matevich, H. Damon Matthews, Ina C. Meier, Mirco Migliavacca, Awaz Mohamed, Sungmin O, David Obura, Ben Orlove, Rene Orth, Laura Pereira, Markus Reichstein, Lerato Thakholi, Peter H. Verburg, and Yuki Yoshida
Biogeosciences, 22, 2425–2460, https://doi.org/10.5194/bg-22-2425-2025, https://doi.org/10.5194/bg-22-2425-2025, 2025
Short summary
Short summary
An interdisciplinary collaboration of 36 international researchers from 35 institutions highlights recent findings in biosphere research. Within eight themes, they discuss issues arising from climate change and other anthropogenic stressors and highlight the co-benefits of nature-based solutions and ecosystem services. Based on an analysis of these eight topics, we have synthesized four overarching insights.
Na Li, Sebastian Sippel, Nora Linscheid, Miguel D. Mahecha, Markus Reichstein, and Ana Bastos
EGUsphere, https://doi.org/10.5194/egusphere-2025-1924, https://doi.org/10.5194/egusphere-2025-1924, 2025
Short summary
Short summary
The global land carbon sink has increased since the pre-industrial period, mainly caused by increasing atmospheric CO2 emissions and climate change. However, the large year-to-year variations can mask or amplify this trend. Here, we detect the time for the anthropogenic signal to emerge over natural variations in land carbon sink. We removed the circulation-induced variations in the global land carbon sink and effectively reduced the detection time of anthropogenic signal.
Wolfgang Knorr, Matthew Williams, Tea Thum, Thomas Kaminski, Michael Voßbeck, Marko Scholze, Tristan Quaife, T. Luke Smallman, Susan C. Steele-Dunne, Mariette Vreugdenhil, Tim Green, Sönke Zaehle, Mika Aurela, Alexandre Bouvet, Emanuel Bueechi, Wouter Dorigo, Tarek S. El-Madany, Mirco Migliavacca, Marika Honkanen, Yann H. Kerr, Anna Kontu, Juha Lemmetyinen, Hannakaisa Lindqvist, Arnaud Mialon, Tuuli Miinalainen, Gaétan Pique, Amanda Ojasalo, Shaun Quegan, Peter J. Rayner, Pablo Reyes-Muñoz, Nemesio Rodríguez-Fernández, Mike Schwank, Jochem Verrelst, Songyan Zhu, Dirk Schüttemeyer, and Matthias Drusch
Geosci. Model Dev., 18, 2137–2159, https://doi.org/10.5194/gmd-18-2137-2025, https://doi.org/10.5194/gmd-18-2137-2025, 2025
Short summary
Short summary
When it comes to climate change, the land surface is where the vast majority of impacts happen. The task of monitoring those impacts across the globe is formidable and must necessarily rely on satellites – at a significant cost: the measurements are only indirect and require comprehensive physical understanding. We have created a comprehensive modelling system that we offer to the research community to explore how satellite data can be better exploited to help us capture the changes that happen on our lands.
Mana Gharun, Ankit Shekhar, Lukas Hörtnagl, Luana Krebs, Nicola Arriga, Mirco Migliavacca, Marilyn Roland, Bert Gielen, Leonardo Montagnani, Enrico Tomelleri, Ladislav Šigut, Matthias Peichl, Peng Zhao, Marius Schmidt, Thomas Grünwald, Mika Korkiakoski, Annalea Lohila, and Nina Buchmann
Biogeosciences, 22, 1393–1411, https://doi.org/10.5194/bg-22-1393-2025, https://doi.org/10.5194/bg-22-1393-2025, 2025
Short summary
Short summary
The effect of winter warming on forest CO2 fluxes has rarely been investigated. We tested the effect of the warm winter of 2020 on the forest CO2 fluxes across 14 sites in Europe and found that the net ecosystem productivity (NEP) across most sites declined during the warm winter due to increased respiration fluxes.
Marco Girardello, Gonzalo Oton, Matteo Piccardo, Mark Pickering, Agata Elia, Guido Ceccherini, Mariano Garcia, Mirco Migliavacca, and Alessandro Cescatti
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-471, https://doi.org/10.5194/essd-2024-471, 2025
Preprint under review for ESSD
Short summary
Short summary
Our research addresses the significant challenge of assessing forest structural diversity over large spatial scales, which is crucial for understanding the relationship between canopy structure, biodiversity, and ecosystem functioning. The advent of spaceborne LiDAR sensors, such as GEDI, has revolutionised the ability to obtain high-quality information on forest structural parameters. Our contribution provides a novel, spatially-explicit dataset on eight forest structural diversity metrics.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Jiří Dušek, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Francesco Martinuzzi, Miguel D. Mahecha, Gustau Camps-Valls, David Montero, Tristan Williams, and Karin Mora
Nonlin. Processes Geophys., 31, 535–557, https://doi.org/10.5194/npg-31-535-2024, https://doi.org/10.5194/npg-31-535-2024, 2024
Short summary
Short summary
We investigated how machine learning can forecast extreme vegetation responses to weather. Examining four models, no single one stood out as the best, though "echo state networks" showed minor advantages. Our results indicate that while these tools are able to generally model vegetation states, they face challenges under extreme conditions. This underlines the potential of artificial intelligence in ecosystem modeling, also pinpointing areas that need further research.
Luciano Emmert, Susan Trumbore, Joaquim dos Santos, Adriano Lima, Niro Higuchi, Robinson Negrón-Juárez, Cléo Dias-Júnior, Tarek El-Madany, Olaf Kolle, Gabriel Ribeiro, and Daniel Marra
EGUsphere, https://doi.org/10.5194/egusphere-2024-3234, https://doi.org/10.5194/egusphere-2024-3234, 2024
Preprint archived
Short summary
Short summary
For the first time, we documented wind gusts with the potential to damage trees in a forest in the Central Amazon. We used meteorological data collected at crown height over 24 months. We recorded 424 gusts, which occur more frequently and intensely in higher elevated areas and during the transition from the dry to the wet season. More intense rains showed the strongest relationship with extreme winds, highlighting the role of extreme events in tree mortality.
Anca Anghelea, Ewelina Dobrowolska, Gunnar Brandt, Martin Reinhardt, Miguel Mahecha, Tejas Morbagal Harish, and Stephan Meissl
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-2024, 13–18, https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-13-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-13-2024, 2024
Guohua Liu, Mirco Migliavacca, Christian Reimers, Basil Kraft, Markus Reichstein, Andrew D. Richardson, Lisa Wingate, Nicolas Delpierre, Hui Yang, and Alexander J. Winkler
Geosci. Model Dev., 17, 6683–6701, https://doi.org/10.5194/gmd-17-6683-2024, https://doi.org/10.5194/gmd-17-6683-2024, 2024
Short summary
Short summary
Our study employs long short-term memory (LSTM) networks to model canopy greenness and phenology, integrating meteorological memory effects. The LSTM model outperforms traditional methods, enhancing accuracy in predicting greenness dynamics and phenological transitions across plant functional types. Highlighting the importance of multi-variate meteorological memory effects, our research pioneers unlock the secrets of vegetation phenology responses to climate change with deep learning techniques.
Miguel D. Mahecha, Guido Kraemer, and Fabio Crameri
Earth Syst. Dynam., 15, 1153–1159, https://doi.org/10.5194/esd-15-1153-2024, https://doi.org/10.5194/esd-15-1153-2024, 2024
Short summary
Short summary
Our paper examines the visual representation of the planetary boundary concept, which helps convey Earth's capacity to sustain human life. We identify three issues: exaggerated impact sizes, confusing color patterns, and inaccessibility for colour-vision deficiency. These flaws can lead to overstating risks. We suggest improving these visual elements for more accurate and accessible information for decision-makers.
Francesco Martinuzzi, Miguel D. Mahecha, David Montero, Lazaro Alonso, and Karin Mora
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W12-2024, 89–95, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-89-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-89-2024, 2024
David Montero, Miguel D. Mahecha, César Aybar, Clemens Mosig, and Sebastian Wieneke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W12-2024, 105–112, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-105-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-105-2024, 2024
Soufiane Karmouche, Evgenia Galytska, Gerald A. Meehl, Jakob Runge, Katja Weigel, and Veronika Eyring
Earth Syst. Dynam., 15, 689–715, https://doi.org/10.5194/esd-15-689-2024, https://doi.org/10.5194/esd-15-689-2024, 2024
Short summary
Short summary
This study explores Atlantic–Pacific interactions and their response to external factors. Causal analysis of 1950–2014 data reveals a shift from a Pacific- to an Atlantic-driven regime. Contrasting impacts between El Niño and tropical Atlantic temperatures are highlighted, along with different pathways connecting the two oceans. The findings also suggest increasing remote contributions of forced Atlantic responses in modulating local Pacific responses during the most recent analyzed decades.
Jan Sodoge, Christian Kuhlicke, Miguel D. Mahecha, and Mariana Madruga de Brito
Nat. Hazards Earth Syst. Sci., 24, 1757–1777, https://doi.org/10.5194/nhess-24-1757-2024, https://doi.org/10.5194/nhess-24-1757-2024, 2024
Short summary
Short summary
We delved into the socio-economic impacts of the 2018–2022 drought in Germany. We derived a dataset covering the impacts of droughts in Germany between 2000 and 2022 on sectors such as agriculture and forestry based on newspaper articles. Notably, our study illustrated that the longer drought had a wider reach and more varied effects. We show that dealing with longer droughts requires different plans compared to shorter ones, and it is crucial to be ready for the challenges they bring.
Sinikka J. Paulus, Rene Orth, Sung-Ching Lee, Anke Hildebrandt, Martin Jung, Jacob A. Nelson, Tarek Sebastian El-Madany, Arnaud Carrara, Gerardo Moreno, Matthias Mauder, Jannis Groh, Alexander Graf, Markus Reichstein, and Mirco Migliavacca
Biogeosciences, 21, 2051–2085, https://doi.org/10.5194/bg-21-2051-2024, https://doi.org/10.5194/bg-21-2051-2024, 2024
Short summary
Short summary
Porous materials are known to reversibly trap water from the air, even at low humidity. However, this behavior is poorly understood for soils. In this analysis, we test whether eddy covariance is able to measure the so-called adsorption of atmospheric water vapor by soils. We find that this flux occurs frequently during dry nights in a Mediterranean ecosystem, while EC detects downwardly directed vapor fluxes. These results can help to map moisture uptake globally.
Martin Jung, Jacob Nelson, Mirco Migliavacca, Tarek El-Madany, Dario Papale, Markus Reichstein, Sophia Walther, and Thomas Wutzler
Biogeosciences, 21, 1827–1846, https://doi.org/10.5194/bg-21-1827-2024, https://doi.org/10.5194/bg-21-1827-2024, 2024
Short summary
Short summary
We present a methodology to detect inconsistencies in perhaps the most important data source for measurements of ecosystem–atmosphere carbon, water, and energy fluxes. We expect that the derived consistency flags will be relevant for data users and will help in improving our understanding of and our ability to model ecosystem–climate interactions.
Oscar M. Baez-Villanueva, Mauricio Zambrano-Bigiarini, Diego G. Miralles, Hylke E. Beck, Jonatan F. Siegmund, Camila Alvarez-Garreton, Koen Verbist, René Garreaud, Juan Pablo Boisier, and Mauricio Galleguillos
Hydrol. Earth Syst. Sci., 28, 1415–1439, https://doi.org/10.5194/hess-28-1415-2024, https://doi.org/10.5194/hess-28-1415-2024, 2024
Short summary
Short summary
Various drought indices exist, but there is no consensus on which index to use to assess streamflow droughts. This study addresses meteorological, soil moisture, and snow indices along with their temporal scales to assess streamflow drought across hydrologically diverse catchments. Using data from 100 Chilean catchments, findings suggest that there is not a single drought index that can be used for all catchments and that snow-influenced areas require drought indices with larger temporal scales.
Steven J. De Hertog, Carmen E. Lopez-Fabara, Ruud van der Ent, Jessica Keune, Diego G. Miralles, Raphael Portmann, Sebastian Schemm, Felix Havermann, Suqi Guo, Fei Luo, Iris Manola, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 15, 265–291, https://doi.org/10.5194/esd-15-265-2024, https://doi.org/10.5194/esd-15-265-2024, 2024
Short summary
Short summary
Changes in land use are crucial to achieve lower global warming. However, despite their importance, the effects of these changes on moisture fluxes are poorly understood. We analyse land cover and management scenarios in three climate models involving cropland expansion, afforestation, and irrigation. Results show largely consistent influences on moisture fluxes, with cropland expansion causing a drying and reduced local moisture recycling, while afforestation and irrigation show the opposite.
Dominik Rains, Isabel Trigo, Emanuel Dutra, Sofia Ermida, Darren Ghent, Petra Hulsman, Jose Gómez-Dans, and Diego G. Miralles
Earth Syst. Sci. Data, 16, 567–593, https://doi.org/10.5194/essd-16-567-2024, https://doi.org/10.5194/essd-16-567-2024, 2024
Short summary
Short summary
Land surface temperature and surface net radiation are vital inputs for many land surface and hydrological models. However, current remote sensing datasets of these variables come mostly at coarse resolutions, and the few high-resolution datasets available have large gaps due to cloud cover. Here, we present a continuous daily product for both variables across Europe for 2018–2019 obtained by combining observations from geostationary as well as polar-orbiting satellites.
Solomon H. Gebrechorkos, Jian Peng, Ellen Dyer, Diego G. Miralles, Sergio M. Vicente-Serrano, Chris Funk, Hylke E. Beck, Dagmawi T. Asfaw, Michael B. Singer, and Simon J. Dadson
Earth Syst. Sci. Data, 15, 5449–5466, https://doi.org/10.5194/essd-15-5449-2023, https://doi.org/10.5194/essd-15-5449-2023, 2023
Short summary
Short summary
Drought is undeniably one of the most intricate and significant natural hazards with far-reaching consequences for the environment, economy, water resources, agriculture, and societies across the globe. In response to this challenge, we have devised high-resolution drought indices. These indices serve as invaluable indicators for assessing shifts in drought patterns and their associated impacts on a global, regional, and local level facilitating the development of tailored adaptation strategies.
Samuel Scherrer, Gabriëlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, and Wouter Dorigo
Hydrol. Earth Syst. Sci., 27, 4087–4114, https://doi.org/10.5194/hess-27-4087-2023, https://doi.org/10.5194/hess-27-4087-2023, 2023
Short summary
Short summary
We explored different options for data assimilation (DA) of the remotely sensed leaf area index (LAI). We found strong biases between LAI predicted by Noah-MP and observations. LAI DA that does not take these biases into account can induce unphysical patterns in the resulting LAI and flux estimates and leads to large changes in the climatology of root zone soil moisture. We tested two bias-correction approaches and explored alternative solutions to treating bias in LAI DA.
Richard Nair, Yunpeng Luo, Tarek El-Madany, Victor Rolo, Javier Pacheco-Labrador, Silvia Caldararu, Kendalynn A. Morris, Marion Schrumpf, Arnaud Carrara, Gerardo Moreno, Markus Reichstein, and Mirco Migliavacca
EGUsphere, https://doi.org/10.5194/egusphere-2023-2434, https://doi.org/10.5194/egusphere-2023-2434, 2023
Preprint archived
Short summary
Short summary
We studied a Mediterranean ecosystem to understand carbon uptake efficiency and its controls. These ecosystems face potential nitrogen-phosphorus imbalances due to pollution. Analysing six years of carbon data, we assessed controls at different timeframes. This is crucial for predicting such vulnerable regions. Our findings revealed N limitation on C uptake, not N:P imbalance, and strong influence of water availability. whether drought or wetness promoted net C uptake depended on timescale.
A. Elia, M. Pickering, M. Girardello, G. Oton, G. Ceccherini, S. Capobianco, M. Piccardo, G. Forzieri, M. Migliavacca, and A. Cescatti
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W7-2023, 41–46, https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-41-2023, https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-41-2023, 2023
Steven J. De Hertog, Carmen E. Lopez-Fabara, Ruud van der Ent, Jessica Keune, Diego G. Miralles, Raphael Portmann, Sebastian Schemm, Felix Havermann, Suqi Guo, Fei Luo, Iris Manola, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2023-953, https://doi.org/10.5194/egusphere-2023-953, 2023
Preprint archived
Short summary
Short summary
Land cover and management changes can affect the climate and water availability. In this study we use climate model simulations of extreme global land cover changes (afforestation, deforestation) and land management changes (irrigation) to understand the effects on the global water cycle and local to continental water availability. We show that cropland expansion generally leads to higher evaporation and lower amounts of precipitation and afforestation and irrigation expansion to the opposite.
Soufiane Karmouche, Evgenia Galytska, Jakob Runge, Gerald A. Meehl, Adam S. Phillips, Katja Weigel, and Veronika Eyring
Earth Syst. Dynam., 14, 309–344, https://doi.org/10.5194/esd-14-309-2023, https://doi.org/10.5194/esd-14-309-2023, 2023
Short summary
Short summary
This study uses a causal discovery method to evaluate the ability of climate models to represent the interactions between the Atlantic multidecadal variability (AMV) and the Pacific decadal variability (PDV). The approach and findings in this study present a powerful methodology that can be applied to a number of environment-related topics, offering tremendous insights to improve the understanding of the complex Earth system and the state of the art of climate modeling.
Sinikka Jasmin Paulus, Tarek Sebastian El-Madany, René Orth, Anke Hildebrandt, Thomas Wutzler, Arnaud Carrara, Gerardo Moreno, Oscar Perez-Priego, Olaf Kolle, Markus Reichstein, and Mirco Migliavacca
Hydrol. Earth Syst. Sci., 26, 6263–6287, https://doi.org/10.5194/hess-26-6263-2022, https://doi.org/10.5194/hess-26-6263-2022, 2022
Short summary
Short summary
In this study, we analyze small inputs of water to ecosystems such as fog, dew, and adsorption of vapor. To measure them, we use a scaling system and later test our attribution of different water fluxes to weight changes. We found that they occur frequently during 1 year in a dry summer ecosystem. In each season, a different flux seems dominant, but they all mainly occur during the night. Therefore, they could be important for the biosphere because rain is unevenly distributed over the year.
Feng Zhong, Shanhu Jiang, Albert I. J. M. van Dijk, Liliang Ren, Jaap Schellekens, and Diego G. Miralles
Hydrol. Earth Syst. Sci., 26, 5647–5667, https://doi.org/10.5194/hess-26-5647-2022, https://doi.org/10.5194/hess-26-5647-2022, 2022
Short summary
Short summary
A synthesis of rainfall interception data from past field campaigns is performed, including 166 forests and 17 agricultural plots distributed worldwide. These site data are used to constrain and validate an interception model that considers sub-grid heterogeneity and vegetation dynamics. A global, 40-year (1980–2019) interception dataset is generated at a daily temporal and 0.1° spatial resolution. This dataset will serve as a benchmark for future investigations of the global hydrological cycle.
Na Li, Sebastian Sippel, Alexander J. Winkler, Miguel D. Mahecha, Markus Reichstein, and Ana Bastos
Earth Syst. Dynam., 13, 1505–1533, https://doi.org/10.5194/esd-13-1505-2022, https://doi.org/10.5194/esd-13-1505-2022, 2022
Short summary
Short summary
Quantifying the imprint of large-scale atmospheric circulation dynamics and associated carbon cycle responses is key to improving our understanding of carbon cycle dynamics. Using a statistical model that relies on spatiotemporal sea level pressure as a proxy for large-scale atmospheric circulation, we quantify the fraction of interannual variability in atmospheric CO2 growth rate and the land CO2 sink that are driven by atmospheric circulation variability.
Xin Yu, René Orth, Markus Reichstein, Michael Bahn, Anne Klosterhalfen, Alexander Knohl, Franziska Koebsch, Mirco Migliavacca, Martina Mund, Jacob A. Nelson, Benjamin D. Stocker, Sophia Walther, and Ana Bastos
Biogeosciences, 19, 4315–4329, https://doi.org/10.5194/bg-19-4315-2022, https://doi.org/10.5194/bg-19-4315-2022, 2022
Short summary
Short summary
Identifying drought legacy effects is challenging because they are superimposed on variability driven by climate conditions in the recovery period. We develop a residual-based approach to quantify legacies on gross primary productivity (GPP) from eddy covariance data. The GPP reduction due to legacy effects is comparable to the concurrent effects at two sites in Germany, which reveals the importance of legacy effects. Our novel methodology can be used to quantify drought legacies elsewhere.
D. Montero, C. Aybar, M. D. Mahecha, and S. Wieneke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W1-2022, 301–306, https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-301-2022, https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-301-2022, 2022
Lorenzo Alfieri, Francesco Avanzi, Fabio Delogu, Simone Gabellani, Giulia Bruno, Lorenzo Campo, Andrea Libertino, Christian Massari, Angelica Tarpanelli, Dominik Rains, Diego G. Miralles, Raphael Quast, Mariette Vreugdenhil, Huan Wu, and Luca Brocca
Hydrol. Earth Syst. Sci., 26, 3921–3939, https://doi.org/10.5194/hess-26-3921-2022, https://doi.org/10.5194/hess-26-3921-2022, 2022
Short summary
Short summary
This work shows advances in high-resolution satellite data for hydrology. We performed hydrological simulations for the Po River basin using various satellite products, including precipitation, evaporation, soil moisture, and snow depth. Evaporation and snow depth improved a simulation based on high-quality ground observations. Interestingly, a model calibration relying on satellite data skillfully reproduces observed discharges, paving the way to satellite-driven hydrological applications.
Sophia Walther, Simon Besnard, Jacob Allen Nelson, Tarek Sebastian El-Madany, Mirco Migliavacca, Ulrich Weber, Nuno Carvalhais, Sofia Lorena Ermida, Christian Brümmer, Frederik Schrader, Anatoly Stanislavovich Prokushkin, Alexey Vasilevich Panov, and Martin Jung
Biogeosciences, 19, 2805–2840, https://doi.org/10.5194/bg-19-2805-2022, https://doi.org/10.5194/bg-19-2805-2022, 2022
Short summary
Short summary
Satellite observations help interpret station measurements of local carbon, water, and energy exchange between the land surface and the atmosphere and are indispensable for simulations of the same in land surface models and their evaluation. We propose generalisable and efficient approaches to systematically ensure high quality and to estimate values in data gaps. We apply them to satellite data of surface reflectance and temperature with different resolutions at the stations.
Jessica Keune, Dominik L. Schumacher, and Diego G. Miralles
Geosci. Model Dev., 15, 1875–1898, https://doi.org/10.5194/gmd-15-1875-2022, https://doi.org/10.5194/gmd-15-1875-2022, 2022
Short summary
Short summary
Air transports moisture and heat, shaping the weather we experience. When and where was this air moistened and warmed by the surface? To address this question, atmospheric models trace the history of air parcels in space and time. However, their uncertainties remain unexplored, which hinders their utility and application. Here, we present a framework that sheds light on these uncertainties. Our approach sets a new standard in the assessment of atmospheric moisture and heat trajectories.
J. Pacheco-Labrador, U. Weber, X. Ma, M. D. Mahecha, N. Carvalhais, C. Wirth, A. Huth, F. J. Bohn, G. Kraemer, U. Heiden, FunDivEUROPE members, and M. Migliavacca
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-1-W1-2021, 49–55, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-49-2022, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-49-2022, 2022
Josephin Kroll, Jasper M. C. Denissen, Mirco Migliavacca, Wantong Li, Anke Hildebrandt, and Rene Orth
Biogeosciences, 19, 477–489, https://doi.org/10.5194/bg-19-477-2022, https://doi.org/10.5194/bg-19-477-2022, 2022
Short summary
Short summary
Plant growth relies on having access to energy (solar radiation) and water (soil moisture). This energy and water availability is impacted by weather extremes, like heat waves and droughts, which will occur more frequently in response to climate change. In this context, we analysed global satellite data to detect in which regions extreme plant growth is controlled by energy or water. We find that extreme plant growth is associated with temperature- or soil-moisture-related extremes.
Joaquín Muñoz-Sabater, Emanuel Dutra, Anna Agustí-Panareda, Clément Albergel, Gabriele Arduini, Gianpaolo Balsamo, Souhail Boussetta, Margarita Choulga, Shaun Harrigan, Hans Hersbach, Brecht Martens, Diego G. Miralles, María Piles, Nemesio J. Rodríguez-Fernández, Ervin Zsoter, Carlo Buontempo, and Jean-Noël Thépaut
Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, https://doi.org/10.5194/essd-13-4349-2021, 2021
Short summary
Short summary
The creation of ERA5-Land responds to a growing number of applications requiring global land datasets at a resolution higher than traditionally reached. ERA5-Land provides operational, global, and hourly key variables of the water and energy cycles over land surfaces, at 9 km resolution, from 1981 until the present. This work provides evidence of an overall improvement of the water cycle compared to previous reanalyses, whereas the energy cycle variables perform as well as those of ERA5.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Christopher Krich, Mirco Migliavacca, Diego G. Miralles, Guido Kraemer, Tarek S. El-Madany, Markus Reichstein, Jakob Runge, and Miguel D. Mahecha
Biogeosciences, 18, 2379–2404, https://doi.org/10.5194/bg-18-2379-2021, https://doi.org/10.5194/bg-18-2379-2021, 2021
Short summary
Short summary
Ecosystems and the atmosphere interact with each other. These interactions determine e.g. the water and carbon fluxes and thus are crucial to understand climate change effects. We analysed the interactions for many ecosystems across the globe, showing that very different ecosystems can have similar interactions with the atmosphere. Meteorological conditions seem to be the strongest interaction-shaping factor. This means that common principles can be identified to describe ecosystem behaviour.
María P. González-Dugo, Xuelong Chen, Ana Andreu, Elisabet Carpintero, Pedro J. Gómez-Giraldez, Arnaud Carrara, and Zhongbo Su
Hydrol. Earth Syst. Sci., 25, 755–768, https://doi.org/10.5194/hess-25-755-2021, https://doi.org/10.5194/hess-25-755-2021, 2021
Short summary
Short summary
Drought is a devastating natural hazard and difficult to define, detect and quantify. Global meteorological data and remote-sensing products present new opportunities to characterize drought in an objective way. In this paper, we applied the surface energy balance model SEBS to estimate monthly evapotranspiration (ET) from 2001 to 2018 over the dehesa area of the Iberian Peninsula. ET anomalies were used to identify the main drought events and analyze their impacts on dehesa vegetation.
Jan Pisek, Angela Erb, Lauri Korhonen, Tobias Biermann, Arnaud Carrara, Edoardo Cremonese, Matthias Cuntz, Silvano Fares, Giacomo Gerosa, Thomas Grünwald, Niklas Hase, Michal Heliasz, Andreas Ibrom, Alexander Knohl, Johannes Kobler, Bart Kruijt, Holger Lange, Leena Leppänen, Jean-Marc Limousin, Francisco Ramon Lopez Serrano, Denis Loustau, Petr Lukeš, Lars Lundin, Riccardo Marzuoli, Meelis Mölder, Leonardo Montagnani, Johan Neirynck, Matthias Peichl, Corinna Rebmann, Eva Rubio, Margarida Santos-Reis, Crystal Schaaf, Marius Schmidt, Guillaume Simioni, Kamel Soudani, and Caroline Vincke
Biogeosciences, 18, 621–635, https://doi.org/10.5194/bg-18-621-2021, https://doi.org/10.5194/bg-18-621-2021, 2021
Short summary
Short summary
Understory vegetation is the most diverse, least understood component of forests worldwide. Understory communities are important drivers of overstory succession and nutrient cycling. Multi-angle remote sensing enables us to describe surface properties by means that are not possible when using mono-angle data. Evaluated over an extensive set of forest ecosystem experimental sites in Europe, our reported method can deliver good retrievals, especially over different forest types with open canopies.
Cited articles
Ammann, C., Spirig, C., Leifeld, J., and Neftel, A.: Assessment of the Nitrogen
and Carbon Budget of Two Managed Temperate Grassland Fields, Agr.
Ecosyst. Environ., 133, 150–162, https://doi.org/10.1016/j.agee.2009.05.006,
2009. a
Anthoni, P. M., Knohl, A., Rebmann, C., Freibauer, A., Mund, M., Ziegler, W.,
Kolle, O., and Schulze, E.-D.: Forest and Agricultural Land-Use-Dependent
CO2 Exchange in Thuringia, Germany, Glob. Change Biol., 10,
2005–2019, https://doi.org/10.1111/j.1365-2486.2004.00863.x, 2004. a
Attanasio, A.: Testing for linear Granger causality from natural/anthropogenic
forcings to global temperature anomalies, Theor. Appl.
Climatol., 110, 281–289, https://doi.org/10.1007/s00704-012-0634-x, 2012. a
Attanasio, A., Pasini, A., and Triacca, U.: A contribution to attribution of
recent global warming by out-of-sample Granger causality analysis,
Atmos. Sci. Lett., 13, 67–72, https://doi.org/10.1002/asl.365,
2012. a
Aubinet, M., Chermanne, B., Vandenhaute, M., Longdoz, B., Yernaux, M., and
Laitat, E.: Long Term Carbon Dioxide Exchange above a Mixed Forest in the
Belgian Ardennes, Agr. Forest Meteorol., 108, 293–315,
https://doi.org/10.1016/S0168-1923(01)00244-1, 2001. a
Baldocchi, D.: Measuring fluxes of trace gases and energy between ecosystems
and the atmosphere – the state and future of the eddy covariance method,
Glob. Change Biol., 20, 3600–3609, https://doi.org/10.1111/gcb.12649,
2014. a
Baldocchi, D., Ryu, Y., and Keenan, T.: Terrestrial Carbon Cycle Variability, F1000 Research, 5, 2371,
https://doi.org/10.12688/f1000research.8962.1, 2016. a
Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon
dioxide exchange rates of ecosystems: past, present and future, Glob. Change
Biol., 9, 479–492, https://doi.org/10.1046/j.1365-2486.2003.00629.x,
2003. a
Baldocchi, D. D., Hincks, B. B., and Meyers, T. P.: Measuring
Biosphere-Atmosphere Exchanges of Biologically Related Gases with
Micrometeorological Methods, Ecology, 69, 1331–1340, https://doi.org/10.2307/1941631,
1988. a
Barnett, L., Barrett, A. B., and Seth, A. K.: Granger causality and transfer
entropy Are equivalent for gaussian variables, Phys. Rev. Lett., 103,
238701, https://doi.org/10.1103/PhysRevLett.103.238701, 2009. a
Benjamini, Y. and Hochberg, Y.: Controlling the False Discovery Rate: A
Practical and Powerful Approach to Multiple Testing, J. R.
Stat. Soc. B, 57, 289–300,
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x,
1995. a
Berbigier, P., Bonnefond, J.-M., and Mellmann, P.: CO2 and Water Vapour
Fluxes for 2 Years above Euroflux Forest Site, Agr. Forest
Meteorol., 108, 183–197, https://doi.org/10.1016/S0168-1923(01)00240-4, 2001. a
Beringer, J., Hutley, L. B., Tapper, N. J., and Cernusak, L. A.: Savanna Fires
and Their Impact on Net Ecosystem Productivity in North Australia, Glob. Change Biol., 13, 990–1004,
https://doi.org/10.1111/j.1365-2486.2007.01334.x, 2007. a
Beringer, J., Hutley, L. B., Hacker, J. M., Neininger, B., and U, K. T. P.:
Patterns and Processes of Carbon, Water and Energy Cycles across Northern
Australian Landscapes: From Point to Region, Agr. Forest
Meteorol., 151, 1409–1416, https://doi.org/10.1016/j.agrformet.2011.05.003,
2011a. a
Beringer, J., Hutley, L. B., Hacker, J. M., Neininger, B., and U, K. T. P.:
Patterns and Processes of Carbon, Water and Energy Cycles across Northern
Australian Landscapes: From Point to Region, Agr. Forest
Meteorol., 151, 1409–1416,
https://doi.org/10.1016/j.agrformet.2011.05.003,
2011b. a
Bernhofer, C., Grünwald, T., Moderow, U., Hehn, M., Eichelmann, U., and Prasse,
H.: FLUXNET2015 DE-Obe Oberbärenburg,
https://doi.org/10.18140/FLX/1440151, 2008–2014. a
Bernhofer, C., Grünwald, T., Moderow, U., Hehn, M., Eichelmann, U., and Prasse,
H.: FLUXNET2015 DE-Akm Anklam, https://doi.org/10.18140/FLX/1440213,
2009–2014. a
Bernhofer, C., Grünwald, T., Moderow, U., Hehn, M., Eichelmann, U., Prasse,
H., and Postel, U.: FLUXNET2015 DE-Spw Spreewald, https://doi.org/10.18140/FLX/1440220,
2010–2014. a
Bonal, D., Bosc, A., Ponton, S., Goret, J.-Y., Burban, B., Gross, P.,
Bonnefond, J.-M., Elbers, J., Longdoz, B., Epron, D., Guehl, J.-M., and
Granier, A.: Impact of Severe Dry Season on Net Ecosystem Exchange in the
Neotropical Rainforest of French Guiana, Glob. Change Biol., 14,
1917–1933, https://doi.org/10.1111/j.1365-2486.2008.01610.x, 2008. a
Bond-Lamberty, B., Wang, C., and Gower, S. T.: Net Primary Production and Net
Ecosystem Production of a Boreal Black Spruce Wildfire Chronosequence, Glob. Change Biol., 10, 473–487, https://doi.org/10.1111/j.1529-8817.2003.0742.x, 2004. a
Brooks, J. R., Flanagan, L. B., Varney, G. T., and Ehleringer, J. R.: Vertical
gradients in photosynthetic gas exchange characteristics and refixation of
respired CO2 within boreal forest canopies, Tree Physiol., 17, 1–12,
https://doi.org/10.1093/treephys/17.1.1, 1997. a
Buermann, W., Forkel, M., O'Sullivan, M., Sitch, S., Friedlingstein, P.,
Haverd, V., Jain, A. K., Kato, E., Kautz, M., Lienert, S., Lombardozzi, D.,
Nabel, J. E. M. S., Tian, H., Wiltshire, A. J., Zhu, D., Smith, W., and
Richardson, A. D.: Widespread seasonal compensation effects of spring warming
on northern plant productivity, Nature, 562, 110–114, https://doi.org/10.1038/s41586-018-0555-7,
2018. a
Cassman, K. G., Dobermann, A., Walters, D. T., and Yang, H.: Meeting Cereal
Demand While Protecting Natural Resources and Improving Environmental
Quality, Annu. Rev. Env. Resour., 28, 315–358,
https://doi.org/10.1146/annurev.energy.28.040202.122858, 2003a. a
Cassman, K. G., Dobermann, A., Walters, D. T., and Yang, H.: Meeting Cereal
Demand While Protecting Natural Resources and Improving Environmental
Quality, Annu. Rev. Env. Resour., 28, 315–358,
https://doi.org/10.1146/annurev.energy.28.040202.122858, 2003b. a
Cernusak, L. A., Hutley, L. B., Beringer, J., Holtum, J. A. M., and Turner,
B. L.: Photosynthetic Physiology of Eucalypts along a Sub-Continental
Rainfall Gradient in Northern Australia, Agr. Forest
Meteorol., 151, 1462–1470, https://doi.org/10.1016/j.agrformet.2011.01.006,
2011. a
Chen, J. M., Govind, A., Sonnentag, O., Zhang, Y., Barr, A., and Amiro, B.:
Leaf Area Index Measurements at Fluxnet-Canada Forest Sites,
Agr. Forest Meteorol., 140, 257–268,
https://doi.org/10.1016/j.agrformet.2006.08.005, 2006. a
Chiesi, M., Maselli, F., Bindi, M., Fibbi, L., Cherubini, P., Arlotta, E.,
Tirone, G., Matteucci, G., and Seufert, G.: Modelling Carbon Budget of
Mediterranean Forests Using Ground and Remote Sensing Measurements,
Agr. Forest Meteorol., 135, 22–34,
https://doi.org/10.1016/j.agrformet.2005.09.011, 2005. a
Claessen, J., Molini, A., Martens, B., Detto, M., Demuzere, M., and Miralles, D. G.: Global biosphere–climate interaction: a causal appraisal of observations and models over multiple temporal scales, Biogeosciences, 16, 4851–4874, https://doi.org/10.5194/bg-16-4851-2019, 2019. a
Delpierre, N., Berveiller, D., Granda, E., and Dufrêne, E.: Wood Phenology,
Not Carbon Input, Controls the Interannual Variability of Wood Growth in a
Temperate Oak Forest, New Phytol., 210, 459–470,
https://doi.org/10.1111/nph.13771, 2016. a
Detto, M., Molini, A., Katul, G., Stoy, P., Palmroth, S., and Baldocchi, D.:
Causality and Persistence in Ecological Systems: A Nonparametric Spectral
Granger Causality Approach, Am. Nat., 179, 524–535,
https://doi.org/10.1086/664628, 2012. a, b, c
Dietiker, D., Buchmann, N., and Eugster, W.: Testing the Ability of the
DNDC Model to Predict CO2 and Water Vapour Fluxes of a Swiss
Cropland Site, Agr. Ecosyst. Environ., 139, 396–401,
https://doi.org/10.1016/j.agee.2010.09.002, 2010. a
Dušek, J., Čížková, H., Stellner, S., Czerný, R., and
Květ, J.: Fluctuating Water Table Affects Gross Ecosystem Production and
Gross Radiation Use Efficiency in a Sedge-Grass Marsh, Hydrobiologia, 692,
57–66, https://doi.org/10.1007/s10750-012-0998-z, 2012. a
Ebert-Uphoff, I. and Deng, Y.: Causal Discovery for Climate Research Using
Graphical Models, J. Climate, 25, 5648–5665,
https://doi.org/10.1175/JCLI-D-11-00387.1, 2012. a
El-Madany, T. S., Reichstein, M., Perez-Priego, O., Carrara, A., Moreno, G.,
Martín, M. P., Pacheco-Labrador, J., Wohlfahrt, G., Nieto, H., Weber, U.,
Kolle, O., Luo, Y.-P., Carvalhais, N., and Migliavacca, M.: Drivers of
spatio-temporal variability of carbon dioxide and energy fluxes in a
Mediterranean savanna ecosystem, Agr. Forest Meteorol., 262,
258–278, https://doi.org/10.1016/j.agrformet.2018.07.010,
2018. a, b, c
Elsner, J. B.: Evidence in support of the climate change–Atlantic hurricane
hypothesis, Geophys. Res. Lett., 33, L16705, https://doi.org/10.1029/2006GL026869,
2006. a
Elsner, J. B.: Granger causality and Atlantic hurricanes, Tellus A, 59, 476–485,
https://doi.org/10.1111/j.1600-0870.2007.00244.x, 2007. a
Emmerich, W. E.: Carbon Dioxide Fluxes in a Semiarid Environment with High
Carbonate Soils, Agr. Forest Meteorol., 116, 91–102,
https://doi.org/10.1016/S0168-1923(02)00231-9, 2003. a
Etzold, S., Ruehr, N. K., Zweifel, R., Dobbertin, M., Zingg, A., Pluess, P.,
Häsler, R., Eugster, W., and Buchmann, N.: The Carbon Balance of Two
Contrasting Mountain Forest Ecosystems in Switzerland: Similar Annual
Trends, but Seasonal Differences, Ecosystems, 14, 1289–1309,
https://doi.org/10.1007/s10021-011-9481-3, 2011. a
Fischer, M. L., Billesbach, D. P., Berry, J. A., Riley, W. J., and Torn, M. S.:
Spatiotemporal Variations in Growing Season Exchanges of CO2,
H2O, and Sensible Heat in Agricultural Fields of the Southern
Great Plains, Earth Interact., 11, 1–21, https://doi.org/10.1175/EI231.1, 2007. a
Galvagno, M., Wohlfahrt, G., Cremonese, E., Rossini, M., Colombo, R., Filippa,
G., Julitta, T., Manca, G., Siniscalco, C., di Cella, U. M., and Migliavacca,
M.: Phenology and Carbon Dioxide Source/Sink Strength of a Subalpine
Grassland in Response to an Exceptionally Short Snow Season, Environ.
Res. Lett., 8, 025008, https://doi.org/10.1088/1748-9326/8/2/025008, 2013. a
Gerken, T., Ruddell, B. L., Fuentes, J. D., Araújo, A., Brunsell, N. A., Maia,
J., Manzi, A., Mercer, J., dos Santos, R. N., von Randow, C., and Stoy,
P. C.: Investigating the mechanisms responsible for the lack of surface
energy balance closure in a central Amazonian tropical rainforest,
Agr. Forest Meteorol., 255, 92–103,
https://doi.org/10.1016/j.agrformet.2017.03.023, 2018. a
Gitelson, A. A., Viña, A., Arkebauer, T. J., Rundquist, D. C., Keydan, G.,
and Leavitt, B.: Remote Estimation of Leaf Area Index and Green Leaf Biomass
in Maize Canopies, Geophys. Res. Lett., 30, 1248,
https://doi.org/10.1029/2002GL016450, 2003. a
Goodwell, A. E. and Kumar, P.: Temporal Information Partitioning Networks
(TIPNets): A process network approach to infer ecohydrologic shifts, Water
Resour. Res., 53, 5899–5919, https://doi.org/10.1002/2016WR020218,
2017a. a
Goodwell, A. E. and Kumar, P.: Temporal information partitioning:
Characterizing synergy, uniqueness, and redundancy in interacting
environmental variables, Water Resour. Res., 53, 5920–5942,
https://doi.org/10.1002/2016WR020216,
2017b. a
Goodwell, A. E., Kumar, P., Fellows, A. W., and Flerchinger, G. N.: Dynamic
process connectivity explains ecohydrologic responses to rainfall pulses and
drought, P. Natl. Acad. Sci. USA, 115, E8604–E8613,
https://doi.org/10.1073/pnas.1800236115, 2018. a
Green, J., Konings, A. G., Alemohammad, S. H., Berry, J., Entekhabi, D.,
Kolassa, J., Lee, J.-E., and Gentine, P.: Regionally strong feedbacks between
the atmosphere and terrestrial biosphere, Nat. Geosci., 10, 410–414,
https://doi.org/10.1038/ngeo2957,
2017. a
Grünwald, T. and Bernhofer, C.: A Decade of Carbon, Water and Energy Flux
Measurements of an Old Spruce Forest at the Anchor Station Tharandt,
Tellus B, 59, 387–396,
https://doi.org/10.1111/j.1600-0889.2007.00259.x, 2007. a
Guanter, L., Kaufmann, H., Segl, K., Foerster, S., Rogass, C., Chabrillat, S.,
Kuester, T., Hollstein, A., Rossner, G., Chlebek, C., Straif, C., Fischer,
S., Schrader, S., Storch, T., Heiden, U., Mueller, A., Bachmann, M., Mühle,
H., Müller, R., Habermeyer, M., Ohndorf, A., Hill, J., Buddenbaum, H.,
Hostert, P., Van der Linden, S., Leitão, P. J., Rabe, A., Doerffer, R.,
Krasemann, H., Xi, H., Mauser, W., Hank, T., Locherer, M., Rast, M., Staenz,
K., and Sang, B.: The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth
Observation, Remote Sensing, 7, 8830–8857, https://doi.org/10.3390/rs70708830, 2015. a
Harris, I., Jones, P., Osborn, T., and Lister, D.: Updated high-resolution
grids of monthly climatic observations – the CRU TS3.10 Dataset,
Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711,
2014. a
Hatala, J. A., Detto, M., and Baldocchi, D. D.: Gross Ecosystem Photosynthesis
Causes a Diurnal Pattern in Methane Emission from Rice, Geophys. Res.
Lett., 39, L06409, https://doi.org/10.1029/2012GL051303, 2012. a
Hutley, L. B., Beringer, J., Isaac, P. R., Hacker, J. M., and Cernusak, L. A.:
A Sub-Continental Scale Living Laboratory: Spatial Patterns of Savanna
Vegetation over a Rainfall Gradient in Northern Australia, Agr. Forest Meteorol., 151, 1417–1428,
https://doi.org/10.1016/j.agrformet.2011.03.002, 2011. a
Imer, D., Merbold, L., Eugster, W., and Buchmann, N.: Temporal and spatial variations of soil CO2, CH4 and N2O fluxes at three differently managed grasslands, Biogeosciences, 10, 5931–5945, https://doi.org/10.5194/bg-10-5931-2013, 2013. a
Jacobs, C. M. J., Jacobs, A. F. G., Bosveld, F. C., Hendriks, D. M. D., Hensen, A., Kroon, P. S., Moors, E. J., Nol, L., Schrier-Uijl, A., and Veenendaal, E. M.: Variability of annual CO2 exchange from Dutch grasslands, Biogeosciences, 4, 803–816, https://doi.org/10.5194/bg-4-803-2007, 2007. a
Justice, C., Townshend, J., Vermote, E., Masuoka, E., Wolfe, R., Saleous, N.,
Roy, D., and Morisette, J.: An overview of MODIS Land data processing and
product status, Remote Sens. Environ., 83, 3–15,
https://doi.org/10.1016/S0034-4257(02)00084-6, 2002. a
Knohl, A., Schulze, E.-D., Kolle, O., and Buchmann, N.: Large Carbon Uptake by
an Unmanaged 250-Year-Old Deciduous Forest in Central Germany,
Agr. Forest Meteorol., 118, 151–167,
https://doi.org/10.1016/S0168-1923(03)00115-1, 2003a. a
Knohl, A., Schulze, E.-D., Kolle, O., and Buchmann, N.: Large carbon uptake by
an unmanaged 250-year-old deciduous forest in Central Germany, Agr. Forest Meteorol., 118, 151–167,
https://doi.org/10.1016/S0168-1923(03)00115-1,
2003b. a
Kodra, E., Chatterjee, S., and Ganguly, A. R.: Exploring Granger causality
between global average observed time series of carbon dioxide and
temperature, Theor. Appl. Climatol., 104, 325–335,
https://doi.org/10.1007/s00704-010-0342-3, 2011. a
Kretschmer, M., Coumou, D., Donges, J. F., and Runge, J.: Using Causal Effect
Networks to Analyze Different Arctic Drivers of Midlatitude Winter
Circulation, J. Climate, 29, 4069–4081,
https://doi.org/10.1175/JCLI-D-15-0654.1, 2016. a
Kumar, P. and Ruddell, B.: Information driven ecohydrologic self-organization,
Entropy, 12, 2085–2096, https://doi.org/10.3390/e12102085, 2010. a
Kurbatova, J., Li, C., Varlagin, A., Xiao, X., and Vygodskaya, N.: Modeling carbon dynamics in two adjacent spruce forests with different soil conditions in Russia, Biogeosciences, 5, 969–980, https://doi.org/10.5194/bg-5-969-2008, 2008. a
Leuning, R., Cleugh, H. A., Zegelin, S. J., and Hughes, D.: Carbon and Water
Fluxes over a Temperate Eucalyptus Forest and a Tropical Wet/Dry Savanna
in Australia: Measurements and Comparison with MODIS Remote Sensing
Estimates, Agr. Forest Meteorol., 129, 151–173,
https://doi.org/10.1016/j.agrformet.2004.12.004, 2005. a
Lindauer, M., Schmid, H. P., Grote, R., Mauder, M., Steinbrecher, R., and
Wolpert, B.: Net Ecosystem Exchange over a Non-Cleared Wind-Throw-Disturbed
Upland Spruce Forest – Measurements and Simulations, Agr. Forest Meteorol., 197, 219–234, https://doi.org/10.1016/j.agrformet.2014.07.005,
2014. a
Lund, M., Falk, J. M., Friborg, T., Mbufong, H. N., Sigsgaard, C., Soegaard,
H., and Tamstorf, M. P.: Trends in CO2 Exchange in a High Arctic
Tundra Heath, 2000–2010, J. Geophys. Res.-Biogeo., 117, G02001, https://doi.org/10.1029/2011JG001901, 2012. a
Ma, S., Baldocchi, D. D., Hatala, J. A., Detto, M., and Yuste, J. C.: Are
rain-induced ecosystem respiration pulses enhanced by legacies of antecedent
photodegradation in semi-arid environments?, Agr. Forest Meteorol., 154–155, 203–213,
https://doi.org/10.1016/j.agrformet.2011.11.007,
2012. a
Mahecha, M. D., Gans, F., Sippel, S., Donges, J. F., Kaminski, T., Metzger, S., Migliavacca, M., Papale, D., Rammig, A., and Zscheischler, J.: Detecting impacts of extreme events with ecological in situ monitoring networks, Biogeosciences, 14, 4255–4277, https://doi.org/10.5194/bg-14-4255-2017, 2017. a
Malenovský, Z., Rott, H., Cihlar, J., Schaepman, M. E., García-Santos, G.,
Fernandes, R., and Berger, M.: Sentinels for science: Potential of
Sentinel-1, -2, and -3 missions for scientific observations of ocean,
cryosphere, and land, Remote Sens. Environ., 120, 91–101,
https://doi.org/10.1016/j.rse.2011.09.026, 2012. a
Marcolla, B., Pitacco, A., and Cescatti, A.: Canopy Architecture and
Turbulence Structure in a Coniferous Forest, Bound.-Lay.
Meteorol., 108, 39–59, https://doi.org/10.1023/A:1023027709805, 2003. a
Marcolla, B., Cescatti, A., Manca, G., Zorer, R., Cavagna, M., Fiora, A.,
Gianelle, D., Rodeghiero, M., Sottocornola, M., and Zampedri, R.: Climatic
Controls and Ecosystem Responses Drive the Inter-Annual Variability of the
Net Ecosystem Exchange of an Alpine Meadow, Agr. Forest Meteorol., 151, 1233–1243, https://doi.org/10.1016/j.agrformet.2011.04.015, 2011. a
Matsumoto, K., Ohta, T., Nakai, T., Kuwada, T., Daikoku, K., Iida, S., Yabuki,
H., Kononov, A. V., van der Molen, M. K., Kodama, Y., Maximov, T. C.,
Dolman, A. J., and Hattori, S.: Energy Consumption and Evapotranspiration at
Several Boreal and Temperate Forests in the Far East, Agr. Forest Meteorol., 148, 1978–1989, https://doi.org/10.1016/j.agrformet.2008.09.008,
2008. a
McDowell, N. G., Bowling, D. R., Bond, B. J., Irvine, J., Law, B. E., Anthoni,
P., and Ehleringer, J. R.: Response of the Carbon Isotopic Content of
Ecosystem, Leaf, and Soil Respiration to Meteorological and Physiological
Driving Factors in a Pinus Ponderosa Ecosystem, Global Biogeochem.
Cy., 18, GB1013, https://doi.org/10.1029/2003GB002049, 2004. a
McPherson, R. A.: A review of vegetation–atmosphere interactions and their
influences on mesoscale phenomena, Prog. Phys. Geogr., 31,
261–285, https://doi.org/10.1177/0309133307079055, 2007. a
Merbold, L., Eugster, W., Stieger, J., Zahniser, M., Nelson, D., and Buchmann,
N.: Greenhouse Gas Budget (CO2, CH4 and N2O) of Intensively
Managed Grassland Following Restoration, Glob. Change Biol., 20,
1913–1928, https://doi.org/10.1111/gcb.12518, 2014. a
Meyer, W. S., Kondrlova, E., and Koerber, G. R.: Evaporation of Perennial
Semi-Arid Woodland in Southeastern Australia Is Adapted for Irregular but
Common Dry Periods, Hydrol. Process., 29, 3714–3726,
https://doi.org/10.1002/hyp.10467, 2015. a
Miralles, D. G., Gentine, P., Seneviratne, S. I., and Teuling, A. J.:
Land–atmospheric feedbacks during droughts and heatwaves: state of the
science and current challenges, Ann. NY Acad. Sci.,
1436, 19–35, https://doi.org/10.1111/nyas.13912,
2018. a
Mogensen, P. K. and Riseth, A. N.: Optim: A mathematical optimization package
for Julia, Journal of Open Source Software, 3, 615,
https://doi.org/10.21105/joss.00615, 2018. a
Monson, R. and Baldocchi, D.: Terrestrial Biosphere-Atmosphere Fluxes,
Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9781139629218, 2014. a
Moureaux, C., Debacq, A., Bodson, B., Heinesch, B., and Aubinet, M.: Annual Net
Ecosystem Carbon Exchange by a Sugar Beet Crop, Agr. Forest Meteorol., 139, 25–39,
https://doi.org/10.1016/j.agrformet.2006.05.009, 2006. a
Nave, L. E., Gough, C. M., Maurer, K. D., Bohrer, G., Hardiman, B. S., Moine,
J. L., Munoz, A. B., Nadelhoffer, K. J., Sparks, J. P., Strahm, B. D., Vogel,
C. S., and Curtis, P. S.: Disturbance and the Resilience of Coupled Carbon
and Nitrogen Cycling in a North Temperate Forest, J. Geophys.
Res.-Biogeo., 116, G04016, https://doi.org/10.1029/2011JG001758, 2011. a
Papagiannopoulou, C., Miralles, D. G., Decubber, S., Demuzere, M., Verhoest, N. E. C., Dorigo, W. A., and Waegeman, W.: A non-linear Granger-causality framework to investigate climate–vegetation dynamics, Geosci. Model Dev., 10, 1945–1960, https://doi.org/10.5194/gmd-10-1945-2017, 2017a. a, b, c
Papale, D., Black, T. A., Carvalhais, N., Cescatti, A., Chen, J., Jung, M.,
Kiely, G., Lasslop, G., Mahecha, M. D., Margolis, H., Merbold, L.,
Montagnani, L., Moors, E., Olesen, J. E., Reichstein, M., Tramontana, G., van
Gorsel, E., Wohlfahrt, G., and Ráduly, B.: Effect of spatial sampling from
European flux towers for estimating carbon and water fluxes with artificial
neural networks, J. Geophys. Res.-Biogeo., 120,
1941–1957, https://doi.org/10.1002/2015JG002997,
2015. a
Pearl, J.: Causality, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,São Paulo, Delhi, Dubai, Tokyo,
https://doi.org/10.1017/CBO9780511803161, 2009. a, b, c
Pearl, J. and Mackenzie, D.: The Book of Why: The New Science of Cause and
Effect, 1st Edn., Basic Books, Inc., New York, NY, USA, 2018. a
Pilegaard, K., Ibrom, A., Courtney, M. S., Hummelshøj, P., and Jensen,
N. O.: Increasing Net CO2 Uptake by a Danish Beech Forest during the
Period from 1996 to 2009, Agr. Forest Meteorol., 151, 934–946,
https://doi.org/10.1016/j.agrformet.2011.02.013, 2011. a
Pinzon, J. E. and Tucker, C. J.: A Non-Stationary 1981–2012 AVHRR NDVI3g Time
Series, Remote Sensing, 6, 6929–6960, https://doi.org/10.3390/rs6086929,
2014 (data available at: https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/, last access: 2 Feruary 2019). a, b
Prescher, A.-K., Grünwald, T., and Bernhofer, C.: Land Use Regulates Carbon
Budgets in Eastern Germany: From NEE to NBP, Agr. Forest Meteorol., 150, 1016–1025, https://doi.org/10.1016/j.agrformet.2010.03.008,
2010a. a
Prescher, A.-K., Grünwald, T., and Bernhofer, C.: Land Use Regulates Carbon
Budgets in Eastern Germany: From NEE to NBP, Agr. Forest Meteorol., 150, 1016–1025, https://doi.org/10.1016/j.agrformet.2010.03.008,
2010b. a
Pryor, S. C., Barthelmie, R. J., and Jensen, B.: Nitrogen Dry Deposition at an
AmeriFlux Site in a Hardwood Forest in the Midwest, Geophys. Res.
Lett., 26, 691–694, https://doi.org/10.1029/1999GL900066, 1999. a
Qi, W. and Dubayah, R. O.: Combining Tandem-X InSAR and simulated GEDI lidar
observations for forest structure mapping, Remote Sens. Environ.,
187, 253–266, https://doi.org/10.1016/j.rse.2016.10.018,
2016. a
Rambal, S., Joffre, R., Ourcival, J. M., Cavender-Bares, J., and Rocheteau, A.:
The Growth Respiration Component in Eddy CO2 Flux from a Quercus Ilex
Mediterranean Forest, Glob. Change Biol., 10, 1460–1469,
https://doi.org/10.1111/j.1365-2486.2004.00819.x, 2004. a
Rayment, M. B. and Jarvis, P. G.: Seasonal Gas Exchange of Black Spruce Using
an Automatic Branch Bag System, Can. J. Forest Res., 29,
1528–1538, https://doi.org/10.1139/x99-130, 1999a. a
Rayment, M. B. and Jarvis, P. G.: Seasonal Gas Exchange of Black Spruce Using
an Automatic Branch Bag System, Can. J. Forest Res., 29,
1528–1538, https://doi.org/10.1139/x99-130, 1999b. a
Rey, A., Pegoraro, E., Tedeschi, V., Parri, I. D., Jarvis, P. G., and
Valentini, R.: Annual Variation in Soil Respiration and Its Components in a
Coppice Oak Forest in Central Italy, Glob. Change Biol., 8, 851–866,
https://doi.org/10.1046/j.1365-2486.2002.00521.x, 2002. a
Rothstein, D. E., Zak, D. R., Pregitzer, K. S., and Curtis, P. S.: Kinetics of
Nitrogen Uptake by Populus Tremuloides in Relation to Atmospheric CO2
and Soil Nitrogen Availability, Tree Physiol., 20, 265–270,
https://doi.org/10.1093/treephys/20.4.265, 2000. a
Ruddell, B., Yu, R., Kang, M., and Childers, D.: Seasonally varied controls of
climate and phenophase on terrestrial carbon dynamics: modeling eco-climate
system state using Dynamical Process Networks, Landscape Ecol., 31, 165–180,
https://doi.org/10.1007/s10980-015-0253-x, 2015. a
Ruddell, B. L. and Kumar, P.: Ecohydrologic process networks: 1.
Identification, Water Resour. Res., 45, w03419,
https://doi.org/10.1029/2008WR007279, 2009. a, b
Ruehr, N. K., Martin, J. G., and Law, B. E.: Effects of Water Availability on
Carbon and Water Exchange in a Young Ponderosa Pine Forest: Above- and
Belowground Responses, Agr. Forest Meteorol., 164, 136–148,
https://doi.org/10.1016/j.agrformet.2012.05.015, 2012a. a
Ruehr, N. K., Martin, J. G., and Law, B. E.: Effects of Water Availability on
Carbon and Water Exchange in a Young Ponderosa Pine Forest: Above- and
Belowground Responses, Agr. Forest Meteorol., 164, 136–148,
https://doi.org/10.1016/j.agrformet.2012.05.015, 2012b. a
Runge, J., Heitzig, J., Petoukhov, V., and Kurths, J.: Escaping the Curse of
Dimensionality in Estimating Multivariate Transfer Entropy, Phys. Rev. Lett.,
108, 258701, https://doi.org/10.1103/PhysRevLett.108.258701,
2012. a, b
Runge, J., Petoukhov, V., and Kurths, J.: Quantifying the Strength and Delay of
Climatic Interactions: The Ambiguities of Cross Correlation and a Novel
Measure Based on Graphical Models, J. Climate, 27, 720–739,
https://doi.org/10.1175/JCLI-D-13-00159.1, 2014. a, b
Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M. D., Muñoz-Marí, J., van Nes, E. H., Peters, J., Quax, R., Reichstein, M., Scheffer, M., Schölkopf, B., Spirtes, P., Sugihara, G., Sun, J., Zhang, K., and Zscheischler, J.:
Inferring causation from time series in Earth system sciences, Nat.
Commun., 10, 2553, https://doi.org/10.1038/s41467-019-10105-3, 2019a. a, b, c, d, e, f
Saleska, S. R., Miller, S. D., Matross, D. M., Goulden, M. L., Wofsy, S. C.,
da Rocha, H. R., de Camargo, P. B., Crill, P., Daube, B. C., de
Freitas, H. C., Hutyra, L., Keller, M., Kirchhoff, V., Menton, M., Munger,
J. W., Pyle, E. H., Rice, A. H., and Silva, H.: Carbon in Amazon Forests:
Unexpected Seasonal Fluxes and Disturbance-Induced Losses,
Science, 302, 1554–1557, https://doi.org/10.1126/science.1091165, 2003. a
Schade, G. W., Goldstein, A. H., and Lamanna, M. S.: Are Monoterpene Emissions
Influenced by Humidity?, Geophys. Res. Lett., 26, 2187–2190,
https://doi.org/10.1029/1999GL900444, 1999. a
Schreiber, T.: Measuring Information Transfer, Phys. Rev. Lett., 85, 461–464,
https://doi.org/10.1103/PhysRevLett.85.461, 2000. a, b
Scott, R. L., Huxman, T. E., Cable, W. L., and Emmerich, W. E.: Partitioning of
Evapotranspiration and Its Relation to Carbon Dioxide Exchange in a
Chihuahuan Desert Shrubland, Hydrol. Process., 20, 3227–3243,
https://doi.org/10.1002/hyp.6329, 2006. a
Scott, R. L., Cable, W. L., and Hultine, K. R.: The Ecohydrologic Significance
of Hydraulic Redistribution in a Semiarid Savanna, Water Resour. Res.,
44, W02440, https://doi.org/10.1029/2007WR006149, 2008. a
Shadaydeh, M., Garcia, Y. G., Mahecha, M., Reichstein, M., and Denzler, J.:
Analyzing the Time Variant Causality in Ecological Time Series: A
Time-Frequency Approach, in: International Conference on Ecological
Informatics (ICEI), 151–152, available at: https://icei2018.uni-jena.de/ (last access: 14 December 2019), 2018. a
Sippel, S., Forkel, M., Rammig, A., Thonicke, K., Flach, M., Heimann, M., Otto,
F. E. L., Reichstein, M., and Mahecha, M. D.: Contrasting and interacting
changes in simulated spring and summer carbon cycle extremes in European
ecosystems, Environ. Res. Lett., 12, 075006,
https://doi.org/10.1088/1748-9326/aa7398, 2017. a
Spano, D., Duce, P., Marras, S., Sirca, C., Arca, A., Zara, P., and Ventura, A.: FLUXNET2015 IT-Noe Arca di Noe – Le Prigionette, https://doi.org/10.18140/FLX/1440171, 2004–2014. a
Spirtes, P. and Glymour, C.: An Algorithm for Fast Recovery of Sparse Causal
Graphs, Soc. Sci. Comput. Rev., 9, 62–72,
https://doi.org/10.1177/089443939100900106, 1991. a, b
Suni, T., Rinne, J., Reissell, A., Altimir, N., Keronen, P., Rannik, U.,
Dal Maso, M., Kulmala, M., and Vesala, T.: Long-Term Measurements of Surface
Fluxes above a Scots Pine Forest in Hyytiala, Southern Finland,
1996–2001, Boreal Environ. Res., 8, 287–301, 2003. a
Tang, J., Baldocchi, D. D., Qi, Y., and Xu, L.: Assessing Soil CO2 Efflux
Using Continuous Measurements of CO2 Profiles in Soils with Small
Solid-State Sensors, Agr. Forest Meteorol., 118, 207–220,
https://doi.org/10.1016/S0168-1923(03)00112-6, 2003. a
Thum, T., Aalto, T., Laurila, T., Aurela, M., Kolari, P., and Hari, P.:
Parametrization of Two Photosynthesis Models at the Canopy Scale in a
Northern Boreal Scots Pine Forest, Tellus B, 59, 874–890,
https://doi.org/10.1111/j.1600-0889.2007.00305.x, 2007. a
University of East Anglia Climatic Research Unit, Jones, P. D., and Harris, I. C.: Climatic Research Unit (CRU): Time-series (TS) datasets of variations in climate with variations in other phenomena v3, NCAS British Atmospheric Data Centre, available at: http://catalogue.ceda.ac.uk/uuid/3f8944800cc48e1cbc29a5ee12d8542d (last access: 2 February 2019), 2008. a
Valentini, R., Angelis, P. D., Matteucci, G., Monaco, R., Dore, S., and
Mucnozza, G. E. S.: Seasonal Net Carbon Dioxide Exchange of a Beech Forest
with the Atmosphere, Glob. Change Biol., 2, 199–207,
https://doi.org/10.1111/j.1365-2486.1996.tb00072.x, 1996. a
Vitale, L., Di Tommasi, P., D'Urso, G., and Magliulo, V.: The Response of
Ecosystem Carbon Fluxes to LAI and Environmental Drivers in a Maize Crop
Grown in Two Contrasting Seasons, Int. J. Biometeorol.,
60, 411–420, https://doi.org/10.1007/s00484-015-1038-2, 2016. a
von Buttlar, J., Zscheischler, J., Rammig, A., Sippel, S., Reichstein, M., Knohl, A., Jung, M., Menzer, O., Arain, M. A., Buchmann, N., Cescatti, A., Gianelle, D., Kiely, G., Law, B. E., Magliulo, V., Margolis, H., McCaughey, H., Merbold, L., Migliavacca, M., Montagnani, L., Oechel, W., Pavelka, M., Peichl, M., Rambal, S., Raschi, A., Scott, R. L., Vaccari, F. P., van Gorsel, E., Varlagin, A., Wohlfahrt, G., and Mahecha, M. D.: Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: a systematic assessment across ecosystems and climate zones, Biogeosciences, 15, 1293–1318, https://doi.org/10.5194/bg-15-1293-2018, 2018. a
Wang, C., Bond-Lamberty, B., and Gower, S. T.: Environmental Controls on
Carbon Dioxide Flux from Black Spruce Coarse Woody Debris, Oecologia, 132,
374–381, https://doi.org/10.1007/s00442-002-0987-4, 2002a.
a
Wang, C., Bond-Lamberty, B., and Gower, S. T.: Environmental Controls on
Carbon Dioxide Flux from Black Spruce Coarse Woody Debris, Oecologia, 132,
374–381, https://doi.org/10.1007/s00442-002-0987-4, 2002b. a
Wang, C., Bond-Lamberty, B., and Gower, S. T.: Environmental Controls on
Carbon Dioxide Flux from Black Spruce Coarse Woody Debris, Oecologia, 132,
374–381, https://doi.org/10.1007/s00442-002-0987-4, 2002c. a
Westergaard-Nielsen, A., Lund, M., Hansen, B. U., and Tamstorf, M. P.: Camera
Derived Vegetation Greenness Index as Proxy for Gross Primary Production in a
Low Arctic Wetland Area, ISPRS J. Photogramm., 86, 89–99, https://doi.org/10.1016/j.isprsjprs.2013.09.006, 2013. a
Wofsy, S. C., Goulden, M. L., Munger, J. W., Fan, S.-M., Bakwin, P. S., Daube,
B. C., Bassow, S. L., and Bazzaz, F. A.: Net Exchange of CO2 in a
Mid-Latitude Forest, Science, 260, 1314–1317,
https://doi.org/10.1126/science.260.5112.1314, 1993. a
Wohlfahrt, G., Hammerle, A., Haslwanter, A., Bahn, M., Tappeiner, U., and
Cernusca, A.: Seasonal and inter-annual variability of the net ecosystem CO2
exchange of a temperate mountain grassland: Effects of weather and
management, J. Geophys. Res.-Atmos., 113, D08110,
https://doi.org/10.1029/2007JD009286, 2008. a
Woodcock, C. E., Allen, R., Anderson, M., Belward, A., Bindschadler, R., Cohen,
W., Gao, F., Goward, S. N., Helder, D., Helmer, E., Nemani, R., Oreopoulos,
L., Schott, J., Thenkabail, P. S., Vermote, E. F., Vogelmann, J., Wulder,
M. A., and Wynne, R.: Free Access to Landsat Imagery, Science, 320,
1011–1011, https://doi.org/10.1126/science.320.5879.1011a, 2008. a
Wright, S.: Correlation and causation, J. Agr. Res., 20, 557–580,
1921. a
Xu, L., Baldocchi, D. D., and Tang, J.: How Soil Moisture, Rain Pulses, and
Growth Alter the Response of Ecosystem Respiration to Temperature, Global
Biogeochem. Cy., 18, GB4002, https://doi.org/10.1029/2004GB002281, 2004. a
Yu, R., Ruddell, B. L., Kang, M., Kim, J., and Childers, D.: Anticipating
global terrestrial ecosystem state change using FLUXNET, Glob. Change Biol., 25, 2352–2367, https://doi.org/10.1111/gcb.14602,
2019. a
Zielis, S., Etzold, S., Zweifel, R., Eugster, W., Haeni, M., and Buchmann, N.: NEP of a Swiss subalpine forest is significantly driven not only by current but also by previous year's weather, Biogeosciences, 11, 1627–1635, https://doi.org/10.5194/bg-11-1627-2014, 2014. a
Short summary
Causal inference promises new insight into biosphere–atmosphere interactions using time series only. To understand the behaviour of a specific method on such data, we used artificial and observation-based data. The observed structures are very interpretable and reveal certain ecosystem-specific behaviour, as only a few relevant links remain, in contrast to pure correlation techniques. Thus, causal inference allows to us gain well-constrained insights into processes and interactions.
Causal inference promises new insight into biosphere–atmosphere interactions using time series...
Altmetrics
Final-revised paper
Preprint