Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.480
IF3.480
IF 5-year value: 4.194
IF 5-year
4.194
CiteScore value: 6.7
CiteScore
6.7
SNIP value: 1.143
SNIP1.143
IPP value: 3.65
IPP3.65
SJR value: 1.761
SJR1.761
Scimago H <br class='widget-line-break'>index value: 118
Scimago H
index
118
h5-index value: 60
h5-index60
Volume 12, issue 11
Biogeosciences, 12, 3447–3467, 2015
https://doi.org/10.5194/bg-12-3447-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Biogeosciences, 12, 3447–3467, 2015
https://doi.org/10.5194/bg-12-3447-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 Jun 2015

Research article | 05 Jun 2015

Modeling photosynthesis of discontinuous plant canopies by linking the Geometric Optical Radiative Transfer model with biochemical processes

Q. Xin et al.

Related authors

A simple time-stepping scheme to simulate leaf area index, phenology, and gross primary production across deciduous broadleaf forests in the eastern United States
Qinchuan Xin, Yongjiu Dai, and Xiaoping Liu
Biogeosciences, 16, 467–484, https://doi.org/10.5194/bg-16-467-2019,https://doi.org/10.5194/bg-16-467-2019, 2019
Short summary
Land surface phenological response to decadal climate variability across Australia using satellite remote sensing
M. Broich, A. Huete, M. G. Tulbure, X. Ma, Q. Xin, M. Paget, N. Restrepo-Coupe, K. Davies, R. Devadas, and A. Held
Biogeosciences, 11, 5181–5198, https://doi.org/10.5194/bg-11-5181-2014,https://doi.org/10.5194/bg-11-5181-2014, 2014

Related subject area

Biogeochemistry: Modelling, Terrestrial
Historical CO2 emissions from land use and land cover change and their uncertainty
Thomas Gasser, Léa Crepin, Yann Quilcaille, Richard A. Houghton, Philippe Ciais, and Michael Obersteiner
Biogeosciences, 17, 4075–4101, https://doi.org/10.5194/bg-17-4075-2020,https://doi.org/10.5194/bg-17-4075-2020, 2020
Short summary
A Bayesian approach to evaluation of soil biogeochemical models
Hua W. Xie, Adriana L. Romero-Olivares, Michele Guindani, and Steven D. Allison
Biogeosciences, 17, 4043–4057, https://doi.org/10.5194/bg-17-4043-2020,https://doi.org/10.5194/bg-17-4043-2020, 2020
Short summary
Rainfall intensification increases the contribution of rewetting pulses to soil heterotrophic respiration
Stefano Manzoni, Arjun Chakrawal, Thomas Fischer, Joshua P. Schimel, Amilcare Porporato, and Giulia Vico
Biogeosciences, 17, 4007–4023, https://doi.org/10.5194/bg-17-4007-2020,https://doi.org/10.5194/bg-17-4007-2020, 2020
Short summary
Wide discrepancies in the magnitude and direction of modeled solar-induced chlorophyll fluorescence in response to light conditions
Nicholas C. Parazoo, Troy Magney, Alex Norton, Brett Raczka, Cédric Bacour, Fabienne Maignan, Ian Baker, Yongguang Zhang, Bo Qiu, Mingjie Shi, Natasha MacBean, Dave R. Bowling, Sean P. Burns, Peter D. Blanken, Jochen Stutz, Katja Grossmann, and Christian Frankenberg
Biogeosciences, 17, 3733–3755, https://doi.org/10.5194/bg-17-3733-2020,https://doi.org/10.5194/bg-17-3733-2020, 2020
Short summary
Modeling biological nitrogen fixation in global natural terrestrial ecosystems
Tong Yu and Qianlai Zhuang
Biogeosciences, 17, 3643–3657, https://doi.org/10.5194/bg-17-3643-2020,https://doi.org/10.5194/bg-17-3643-2020, 2020
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, FAO, Rome, 300, 29–64, 1998.
Baldocchi, D., Hutchison, B., Matt, D., and McMillen, R.: Canopy radiative transfer models for spherical and known leaf inclination angle distributions: a test in an oak-hickory forest, J. Appl. Ecol., 22, 539–555, 1985.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., and Evans, R.: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, B. Am. Meteorol. Soc., 82, 2415–2434, 2001.
Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future, Glob. Change Biol., 9, 479–492, 2003.
Ball, J. T., Woodrow, I., and Berry, J.: A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions, in: Progress in Photosynthesis Research, edited by: Biggins, J., Springer Netherlands, 221–224, 1987.
Publications Copernicus
Download
Short summary
We advance the Geometric Optical Radiative Transfer model and derive analytical solutions to radiation absorption by sunlit/shaded leaves. We link the radiative transfer process with the biochemical diffusion process to model canopy photosynthesis. Modeled gross primary production could explain more than 80% variance of flux tower measurements at both hourly and daily scales.
We advance the Geometric Optical Radiative Transfer model and derive analytical solutions to...
Citation
Altmetrics
Final-revised paper
Preprint