Articles | Volume 18, issue 11
https://doi.org/10.5194/bg-18-3467-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-3467-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Carbon dioxide fluxes and carbon balance of an agricultural grassland in southern Finland
Laura Heimsch
CORRESPONDING AUTHOR
Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland
Annalea Lohila
Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland
Institute for Atmospheric and Earth System Research, Physics, University of Helsinki, P.O. Box 64, 00014 University of Helsinki, Finland
Juha-Pekka Tuovinen
Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland
Henriikka Vekuri
Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland
Jussi Heinonsalo
Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland
Institute for Atmospheric and Earth System Research, Forest Sciences, University of Helsinki, P.O. Box 27, 00014 University of Helsinki, Finland
Olli Nevalainen
Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland
Mika Korkiakoski
Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland
Jari Liski
Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland
Tuomas Laurila
Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland
Liisa Kulmala
Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland
Institute for Atmospheric and Earth System Research, Forest Sciences, University of Helsinki, P.O. Box 27, 00014 University of Helsinki, Finland
Related authors
Piaopiao Ke, Anna Lintunen, Pasi Kolari, Annalea Lohila, Santeri Tuovinen, Janne Lampilahti, Roseline Thakur, Maija Peltola, Otso Peräkylä, Tuomo Nieminen, Ekaterina Ezhova, Mari Pihlatie, Asta Laasonen, Markku Koskinen, Helena Rautakoski, Laura Heimsch, Tom Kokkonen, Aki Vähä, Ivan Mammarella, Steffen Noe, Jaana Bäck, Veli-Matti Kerminen, and Markku Kulmala
Biogeosciences, 22, 3235–3251, https://doi.org/10.5194/bg-22-3235-2025, https://doi.org/10.5194/bg-22-3235-2025, 2025
Short summary
Short summary
Our research explores diverse ecosystems’ roles in climate cooling via the concept of CarbonSink+ potential. We measured CO2 uptake and local aerosol production in forests, farms, peatlands, urban gardens, and coastal areas across Finland and Estonia. The long-term data reveal that, while forests are vital with regard to CarbonSink+ potential, farms and urban gardens also play significant roles. These insights can help optimize management policy of natural resources to mitigate global warming.
Olli Nevalainen, Olli Niemitalo, Istem Fer, Antti Juntunen, Tuomas Mattila, Olli Koskela, Joni Kukkamäki, Layla Höckerstedt, Laura Mäkelä, Pieta Jarva, Laura Heimsch, Henriikka Vekuri, Liisa Kulmala, Åsa Stam, Otto Kuusela, Stephanie Gerin, Toni Viskari, Julius Vira, Jari Hyväluoma, Juha-Pekka Tuovinen, Annalea Lohila, Tuomas Laurila, Jussi Heinonsalo, Tuula Aalto, Iivari Kunttu, and Jari Liski
Geosci. Instrum. Method. Data Syst., 11, 93–109, https://doi.org/10.5194/gi-11-93-2022, https://doi.org/10.5194/gi-11-93-2022, 2022
Short summary
Short summary
Better monitoring of soil carbon sequestration is needed to understand the best carbon farming practices in different soils and climate conditions. We, the Field Observatory Network (FiON), have therefore established a methodology for monitoring and forecasting agricultural carbon sequestration by combining offline and near-real-time field measurements, weather data, satellite imagery, and modeling. To disseminate our work, we built a website called the Field Observatory (fieldobservatory.org).
Claudia Guidi, Sia Gosheva-Oney, Markus Didion, Roman Flury, Lorenz Walthert, Stephan Zimmermann, Brian J. Oney, Pascal A. Niklaus, Esther Thürig, Toni Viskari, Jari Liski, and Frank Hagedorn
Biogeosciences, 22, 4107–4122, https://doi.org/10.5194/bg-22-4107-2025, https://doi.org/10.5194/bg-22-4107-2025, 2025
Short summary
Short summary
Predicting soil organic carbon (SOC) stocks in forests is crucial to determining the C balance, yet drivers of SOC stocks remain uncertain at large scales. Across a broad environmental gradient in Switzerland, we compared measured SOC stocks with those modeled by Yasso, which is commonly used for greenhouse gas budgets. We show that soil mineral properties and climate are the main controls of SOC stocks, indicating that better accounting of these processes will advance the accuracy of SOC stock predictions.
Piaopiao Ke, Anna Lintunen, Pasi Kolari, Annalea Lohila, Santeri Tuovinen, Janne Lampilahti, Roseline Thakur, Maija Peltola, Otso Peräkylä, Tuomo Nieminen, Ekaterina Ezhova, Mari Pihlatie, Asta Laasonen, Markku Koskinen, Helena Rautakoski, Laura Heimsch, Tom Kokkonen, Aki Vähä, Ivan Mammarella, Steffen Noe, Jaana Bäck, Veli-Matti Kerminen, and Markku Kulmala
Biogeosciences, 22, 3235–3251, https://doi.org/10.5194/bg-22-3235-2025, https://doi.org/10.5194/bg-22-3235-2025, 2025
Short summary
Short summary
Our research explores diverse ecosystems’ roles in climate cooling via the concept of CarbonSink+ potential. We measured CO2 uptake and local aerosol production in forests, farms, peatlands, urban gardens, and coastal areas across Finland and Estonia. The long-term data reveal that, while forests are vital with regard to CarbonSink+ potential, farms and urban gardens also play significant roles. These insights can help optimize management policy of natural resources to mitigate global warming.
Teemu Juselius-Rajamäki, Sanna Piilo, Susanna Salminen-Paatero, Emilia Tuomaala, Tarmo Virtanen, Atte Korhola, Anna Autio, Hannu Marttila, Pertti Ala-Aho, Annalea Lohila, and Minna Väliranta
Biogeosciences, 22, 3047–3071, https://doi.org/10.5194/bg-22-3047-2025, https://doi.org/10.5194/bg-22-3047-2025, 2025
Short summary
Short summary
Vegetation can be used to infer the potential climate feedback of peatlands. New studies have shown the recent expansion of peatlands, but their plant community succession has not been studied. Although generally described as dry bog-type vegetation, our results show that peatland margins in a subarctic fen began as wet fen with high methane emissions and shifted to bog-type peatland area only after the Little Ice Age. Thus, they have acted as a carbon source for most of their history.
Stavros Stagakis, Dominik Brunner, Junwei Li, Leif Backman, Anni Karvonen, Lionel Constantin, Leena Järvi, Minttu Havu, Jia Chen, Sophie Emberger, and Liisa Kulmala
Biogeosciences, 22, 2133–2161, https://doi.org/10.5194/bg-22-2133-2025, https://doi.org/10.5194/bg-22-2133-2025, 2025
Short summary
Short summary
The balance between CO2 uptake and emissions from urban green areas is still not well understood. This study evaluated for the first time the urban park CO2 exchange simulations with four different types of biosphere model by comparing them with observations. Even though some advantages and disadvantages of the different model types were identified, there was no strong evidence that more complex models performed better than simple ones.
Mana Gharun, Ankit Shekhar, Lukas Hörtnagl, Luana Krebs, Nicola Arriga, Mirco Migliavacca, Marilyn Roland, Bert Gielen, Leonardo Montagnani, Enrico Tomelleri, Ladislav Šigut, Matthias Peichl, Peng Zhao, Marius Schmidt, Thomas Grünwald, Mika Korkiakoski, Annalea Lohila, and Nina Buchmann
Biogeosciences, 22, 1393–1411, https://doi.org/10.5194/bg-22-1393-2025, https://doi.org/10.5194/bg-22-1393-2025, 2025
Short summary
Short summary
The effect of winter warming on forest CO2 fluxes has rarely been investigated. We tested the effect of the warm winter of 2020 on the forest CO2 fluxes across 14 sites in Europe and found that the net ecosystem productivity (NEP) across most sites declined during the warm winter due to increased respiration fluxes.
Laura Thölix, Leif Backman, Minttu Havu, Esko Karvinen, Jesse Soininen, Justine Trémeau, Olli Nevalainen, Joyson Ahongshangbam, Leena Järvi, and Liisa Kulmala
Biogeosciences, 22, 725–749, https://doi.org/10.5194/bg-22-725-2025, https://doi.org/10.5194/bg-22-725-2025, 2025
Short summary
Short summary
Cities aim for carbon neutrality and seek to understand urban vegetation's role as a carbon sink. Direct measurements are challenging, so models are used to estimate the urban carbon cycle. We evaluated model performance at estimating carbon sequestration in lawns, park trees, and urban forests in Helsinki, Finland. Models captured seasonal and annual variations well. Trees had higher sequestration rates than lawns, and irrigation often enhanced carbon sinks.
Otso Peräkylä, Erkka Rinne, Ekaterina Ezhova, Anna Lintunen, Annalea Lohila, Juho Aalto, Mika Aurela, Pasi Kolari, and Markku Kulmala
Biogeosciences, 22, 153–179, https://doi.org/10.5194/bg-22-153-2025, https://doi.org/10.5194/bg-22-153-2025, 2025
Short summary
Short summary
Forests are seen as good for climate. Yet, in areas with snow, trees break up the white snow surface and absorb more sunlight than open areas. This has a warming effect, negating some of the climate benefit of trees. We studied two site pairs in Finland, both with an open peatland and a forest. We found that the later the snow melts, the more extra energy the forest absorbs as compared to the peatland. This has implications for the future, as snow cover duration is affected by global warming.
Vilna Tyystjärvi, Tiina Markkanen, Leif Backman, Maarit Raivonen, Antti Leppänen, Xuefei Li, Paavo Ojanen, Kari Minkkinen, Roosa Hautala, Mikko Peltoniemi, Jani Anttila, Raija Laiho, Annalea Lohila, Raisa Mäkipää, and Tuula Aalto
Biogeosciences, 21, 5745–5771, https://doi.org/10.5194/bg-21-5745-2024, https://doi.org/10.5194/bg-21-5745-2024, 2024
Short summary
Short summary
Drainage of boreal peatlands strongly influences soil methane fluxes, with important implications for climatic impacts. Here we simulate methane fluxes in forestry-drained and restored peatlands during the 21st century. We found that restoration turned peatlands into a source of methane, but the magnitude varied regionally. In forests, changes in the water table level influenced methane fluxes, and in general, the sink was weaker under rotational forestry compared to continuous cover forestry.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Jiří Dušek, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Amicie A. Delahaie, Lauric Cécillon, Marija Stojanova, Samuel Abiven, Pierre Arbelet, Dominique Arrouays, François Baudin, Antonio Bispo, Line Boulonne, Claire Chenu, Jussi Heinonsalo, Claudy Jolivet, Kristiina Karhu, Manuel Martin, Lorenza Pacini, Christopher Poeplau, Céline Ratié, Pierre Roudier, Nicolas P. A. Saby, Florence Savignac, and Pierre Barré
SOIL, 10, 795–812, https://doi.org/10.5194/soil-10-795-2024, https://doi.org/10.5194/soil-10-795-2024, 2024
Short summary
Short summary
This paper compares the soil organic carbon fractions obtained from a new thermal fractionation scheme and a well-known physical fractionation scheme on an unprecedented dataset of French topsoil samples. For each fraction, we use a machine learning model to determine its environmental drivers (pedology, climate, and land cover). Our results suggest that these two fractionation schemes provide different fractions, which means they provide complementary information.
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci., 28, 4643–4666, https://doi.org/10.5194/hess-28-4643-2024, https://doi.org/10.5194/hess-28-4643-2024, 2024
Short summary
Short summary
We used hydrological models, field measurements, and satellite-based data to study the soil moisture dynamics in a subarctic catchment. The role of groundwater was studied with different ways to model the groundwater dynamics and via comparisons to the observational data. The choice of groundwater model was shown to have a strong impact, and representation of lateral flow was important to capture wet soil conditions. Our results provide insights for ecohydrological studies in boreal regions.
Martti Honkanen, Mika Aurela, Juha Hatakka, Lumi Haraguchi, Sami Kielosto, Timo Mäkelä, Jukka Seppälä, Simo-Matti Siiriä, Ken Stenbäck, Juha-Pekka Tuovinen, Pasi Ylöstalo, and Lauri Laakso
Biogeosciences, 21, 4341–4359, https://doi.org/10.5194/bg-21-4341-2024, https://doi.org/10.5194/bg-21-4341-2024, 2024
Short summary
Short summary
The exchange of CO2 between the sea and the atmosphere was studied in the Archipelago Sea, Baltic Sea, in 2017–2021, using an eddy covariance technique. The sea acted as a net source of CO2 with an average yearly emission of 27.1 gC m-2 yr-1, indicating that the marine ecosystem respired carbon that originated elsewhere. The yearly CO2 emission varied between 18.2–39.2 gC m-2 yr-1, mostly due to the yearly variation of ecosystem carbon uptake.
Esko Karvinen, Leif Backman, Leena Järvi, and Liisa Kulmala
SOIL, 10, 381–406, https://doi.org/10.5194/soil-10-381-2024, https://doi.org/10.5194/soil-10-381-2024, 2024
Short summary
Short summary
We measured and modelled soil respiration, a key part of the biogenic carbon cycle, in different urban green space types to assess its dynamics in urban areas. We discovered surprisingly similar soil respiration across the green space types despite differences in some of its drivers and that irrigation of green spaces notably elevates soil respiration. Our results encourage further research on the topic and especially on the role of irrigation in controlling urban soil respiration.
Helena Rautakoski, Mika Korkiakoski, Jarmo Mäkelä, Markku Koskinen, Kari Minkkinen, Mika Aurela, Paavo Ojanen, and Annalea Lohila
Biogeosciences, 21, 1867–1886, https://doi.org/10.5194/bg-21-1867-2024, https://doi.org/10.5194/bg-21-1867-2024, 2024
Short summary
Short summary
Current and future nitrous oxide (N2O) emissions are difficult to estimate due to their high variability in space and time. Several years of N2O fluxes from drained boreal peatland forest indicate high importance of summer precipitation, winter temperature, and snow conditions in controlling annual N2O emissions. The results indicate increasing year-to-year variation in N2O emissions in changing climate with more extreme seasonal weather conditions.
Justine Trémeau, Beñat Olascoaga, Leif Backman, Esko Karvinen, Henriikka Vekuri, and Liisa Kulmala
Biogeosciences, 21, 949–972, https://doi.org/10.5194/bg-21-949-2024, https://doi.org/10.5194/bg-21-949-2024, 2024
Short summary
Short summary
We studied urban lawns and meadows in the Helsinki metropolitan area, Finland. We found that meadows are more resistant to drought events but that they do not increase carbon sequestration compared with lawns. Moreover, the transformation from lawns to meadows did not demonstrate any negative climate effects in terms of greenhouse gas emissions. Even though social and economic aspects also steer urban development, these results can guide planning to consider carbon-smart options.
Jari-Pekka Nousu, Matthieu Lafaysse, Giulia Mazzotti, Pertti Ala-aho, Hannu Marttila, Bertrand Cluzet, Mika Aurela, Annalea Lohila, Pasi Kolari, Aaron Boone, Mathieu Fructus, and Samuli Launiainen
The Cryosphere, 18, 231–263, https://doi.org/10.5194/tc-18-231-2024, https://doi.org/10.5194/tc-18-231-2024, 2024
Short summary
Short summary
The snowpack has a major impact on the land surface energy budget. Accurate simulation of the snowpack energy budget is difficult, and studies that evaluate models against energy budget observations are rare. We compared predictions from well-known models with observations of energy budgets, snow depths and soil temperatures in Finland. Our study identified contrasting strengths and limitations for the models. These results can be used for choosing the right models depending on the use cases.
Paolo Cristofanelli, Cosimo Fratticioli, Lynn Hazan, Mali Chariot, Cedric Couret, Orestis Gazetas, Dagmar Kubistin, Antti Laitinen, Ari Leskinen, Tuomas Laurila, Matthias Lindauer, Giovanni Manca, Michel Ramonet, Pamela Trisolino, and Martin Steinbacher
Atmos. Meas. Tech., 16, 5977–5994, https://doi.org/10.5194/amt-16-5977-2023, https://doi.org/10.5194/amt-16-5977-2023, 2023
Short summary
Short summary
We investigated the application of two automatic methods for detecting spikes due to local emissions in greenhouse gas (GHG) observations at a subset of sites from the ICOS Atmosphere network. We analysed the sensitivity to the spike frequency of using different methods and settings. We documented the impact of the de-spiking on different temporal aggregations (i.e. hourly, monthly and seasonal averages) of CO2, CH4 and CO 1 min time series.
Jyrki Jauhiainen, Juha Heikkinen, Nicholas Clarke, Hongxing He, Lise Dalsgaard, Kari Minkkinen, Paavo Ojanen, Lars Vesterdal, Jukka Alm, Aldis Butlers, Ingeborg Callesen, Sabine Jordan, Annalea Lohila, Ülo Mander, Hlynur Óskarsson, Bjarni D. Sigurdsson, Gunnhild Søgaard, Kaido Soosaar, Åsa Kasimir, Brynhildur Bjarnadottir, Andis Lazdins, and Raija Laiho
Biogeosciences, 20, 4819–4839, https://doi.org/10.5194/bg-20-4819-2023, https://doi.org/10.5194/bg-20-4819-2023, 2023
Short summary
Short summary
The study looked at published data on drained organic forest soils in boreal and temperate zones to revisit current Tier 1 default emission factors (EFs) provided by the IPCC Wetlands Supplement. We examined the possibilities of forming more site-type specific EFs and inspected the potential relevance of environmental variables for predicting annual soil greenhouse gas balances by statistical models. The results have important implications for EF revisions and national emission reporting.
Joyson Ahongshangbam, Liisa Kulmala, Jesse Soininen, Yasmin Frühauf, Esko Karvinen, Yann Salmon, Anna Lintunen, Anni Karvonen, and Leena Järvi
Biogeosciences, 20, 4455–4475, https://doi.org/10.5194/bg-20-4455-2023, https://doi.org/10.5194/bg-20-4455-2023, 2023
Short summary
Short summary
Urban vegetation is important for removing urban CO2 emissions and cooling. We studied the response of urban trees' functions (photosynthesis and transpiration) to a heatwave and drought at four urban green areas in the city of Helsinki. We found that tree water use was increased during heatwave and drought periods, but there was no change in the photosynthesis rates. The heat and drought conditions were severe at the local scale but were not excessive enough to restrict urban trees' functions.
Matti Kämäräinen, Juha-Pekka Tuovinen, Markku Kulmala, Ivan Mammarella, Juha Aalto, Henriikka Vekuri, Annalea Lohila, and Anna Lintunen
Biogeosciences, 20, 897–909, https://doi.org/10.5194/bg-20-897-2023, https://doi.org/10.5194/bg-20-897-2023, 2023
Short summary
Short summary
In this study, we introduce a new method for modeling the exchange of carbon between the atmosphere and a study site located in a boreal forest in southern Finland. Our method yields more accurate results than previous approaches in this context. Accurately estimating carbon exchange is crucial for gaining a better understanding of the role of forests in regulating atmospheric carbon and addressing climate change.
Lauri Heiskanen, Juha-Pekka Tuovinen, Henriikka Vekuri, Aleksi Räsänen, Tarmo Virtanen, Sari Juutinen, Annalea Lohila, Juha Mikola, and Mika Aurela
Biogeosciences, 20, 545–572, https://doi.org/10.5194/bg-20-545-2023, https://doi.org/10.5194/bg-20-545-2023, 2023
Short summary
Short summary
We measured and modelled the CO2 and CH4 fluxes of the terrestrial and aquatic ecosystems of the subarctic landscape for 2 years. The landscape was an annual CO2 sink and a CH4 source. The forest had the largest contribution to the landscape-level CO2 sink and the peatland to the CH4 emissions. The lakes released 24 % of the annual net C uptake of the landscape back to the atmosphere. The C fluxes were affected most by the rainy peak growing season of 2017 and the drought event in July 2018.
Yao Gao, Eleanor J. Burke, Sarah E. Chadburn, Maarit Raivonen, Mika Aurela, Lawrence B. Flanagan, Krzysztof Fortuniak, Elyn Humphreys, Annalea Lohila, Tingting Li, Tiina Markkanen, Olli Nevalainen, Mats B. Nilsson, Włodzimierz Pawlak, Aki Tsuruta, Huiyi Yang, and Tuula Aalto
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-229, https://doi.org/10.5194/bg-2022-229, 2022
Manuscript not accepted for further review
Short summary
Short summary
We coupled a process-based peatland CH4 emission model HIMMELI with a state-of-art land surface model JULES. The performance of the coupled model was evaluated at six northern wetland sites. The coupled model is considered to be more appropriate in simulating wetland CH4 emission. In order to improve the simulated CH4 emission, the model requires better representation of the peat soil carbon and hydrologic processes in JULES and the methane production and transportation processes in HIMMELI.
Matti Räsänen, Mika Aurela, Ville Vakkari, Johan P. Beukes, Juha-Pekka Tuovinen, Pieter G. Van Zyl, Miroslav Josipovic, Stefan J. Siebert, Tuomas Laurila, Markku Kulmala, Lauri Laakso, Janne Rinne, Ram Oren, and Gabriel Katul
Hydrol. Earth Syst. Sci., 26, 5773–5791, https://doi.org/10.5194/hess-26-5773-2022, https://doi.org/10.5194/hess-26-5773-2022, 2022
Short summary
Short summary
The productivity of semiarid grazed grasslands is linked to the variation in rainfall and transpiration. By combining carbon dioxide and water flux measurements, we show that the annual transpiration is nearly constant during wet years while grasses react quickly to dry spells and drought, which reduce transpiration. The planning of annual grazing strategies could consider the early-season rainfall frequency that was linked to the portion of annual transpiration.
Maiju Linkosalmi, Juha-Pekka Tuovinen, Olli Nevalainen, Mikko Peltoniemi, Cemal M. Taniş, Ali N. Arslan, Juuso Rainne, Annalea Lohila, Tuomas Laurila, and Mika Aurela
Biogeosciences, 19, 4747–4765, https://doi.org/10.5194/bg-19-4747-2022, https://doi.org/10.5194/bg-19-4747-2022, 2022
Short summary
Short summary
Vegetation greenness was monitored with digital cameras in three northern peatlands during five growing seasons. The greenness index derived from the images was highest at the most nutrient-rich site. Greenness indicated the main phases of phenology and correlated with CO2 uptake, though this was mainly related to the common seasonal cycle. The cameras and Sentinel-2 satellite showed consistent results, but more frequent satellite data are needed for reliable detection of phenological phases.
Jarmo Mäkelä, Laura Arppe, Hannu Fritze, Jussi Heinonsalo, Kristiina Karhu, Jari Liski, Markku Oinonen, Petra Straková, and Toni Viskari
Biogeosciences, 19, 4305–4313, https://doi.org/10.5194/bg-19-4305-2022, https://doi.org/10.5194/bg-19-4305-2022, 2022
Short summary
Short summary
Soils account for the largest share of carbon found in terrestrial ecosystems, and accurate depiction of soil carbon decomposition is essential in understanding how permanent these carbon storages are. We present a straightforward way to include carbon isotope concentrations into soil decomposition and carbon storages for the Yasso model, which enables the model to use 13C as a natural tracer to track changes in the underlying soil organic matter decomposition.
Sari Juutinen, Mika Aurela, Juha-Pekka Tuovinen, Viktor Ivakhov, Maiju Linkosalmi, Aleksi Räsänen, Tarmo Virtanen, Juha Mikola, Johanna Nyman, Emmi Vähä, Marina Loskutova, Alexander Makshtas, and Tuomas Laurila
Biogeosciences, 19, 3151–3167, https://doi.org/10.5194/bg-19-3151-2022, https://doi.org/10.5194/bg-19-3151-2022, 2022
Short summary
Short summary
We measured CO2 and CH4 fluxes in heterogenous Arctic tundra in eastern Siberia. We found that tundra wetlands with sedge and grass vegetation contributed disproportionately to the landscape's ecosystem CO2 uptake and CH4 emissions to the atmosphere. Moreover, we observed high CH4 consumption in dry tundra, particularly in barren areas, offsetting part of the CH4 emissions from the wetlands.
Miska Olin, Magdalena Okuljar, Matti P. Rissanen, Joni Kalliokoski, Jiali Shen, Lubna Dada, Markus Lampimäki, Yusheng Wu, Annalea Lohila, Jonathan Duplissy, Mikko Sipilä, Tuukka Petäjä, Markku Kulmala, and Miikka Dal Maso
Atmos. Chem. Phys., 22, 8097–8115, https://doi.org/10.5194/acp-22-8097-2022, https://doi.org/10.5194/acp-22-8097-2022, 2022
Short summary
Short summary
Atmospheric new particle formation is an important source of the total particle number concentration in the atmosphere. Several parameters for predicting new particle formation events have been suggested before, but the results have been inconclusive. This study proposes an another predicting parameter, related to a specific type of highly oxidized organic molecules, especially for similar locations to the measurement site in this study, which was a coastal agricultural site in Finland.
Minttu Havu, Liisa Kulmala, Pasi Kolari, Timo Vesala, Anu Riikonen, and Leena Järvi
Biogeosciences, 19, 2121–2143, https://doi.org/10.5194/bg-19-2121-2022, https://doi.org/10.5194/bg-19-2121-2022, 2022
Short summary
Short summary
The carbon sequestration potential of two street tree species and the soil beneath them was quantified with the urban land surface model SUEWS and the soil carbon model Yasso. The street tree plantings turned into a modest sink of carbon from the atmosphere after 14 years. Overall, the results indicate the importance of soil in urban carbon sequestration estimations, as soil respiration exceeded the carbon uptake in the early phase, due to the high initial carbon loss from the soil.
Mika Korkiakoski, Tiia Määttä, Krista Peltoniemi, Timo Penttilä, and Annalea Lohila
Biogeosciences, 19, 2025–2041, https://doi.org/10.5194/bg-19-2025-2022, https://doi.org/10.5194/bg-19-2025-2022, 2022
Short summary
Short summary
We measured CH4 fluxes and production and oxidation potentials from irrigated and non-irrigated podzolic soil in a boreal forest. CH4 sink was smaller at the irrigated site but did not cause CH4 emission, with one exception. We also showed that under laboratory conditions, not only wet conditions, but also fresh carbon, are needed to make podzolic soil into a CH4 source. Our study provides important data for improving the process models describing the upland soil CH4 dynamics.
Elodie Salmon, Fabrice Jégou, Bertrand Guenet, Line Jourdain, Chunjing Qiu, Vladislav Bastrikov, Christophe Guimbaud, Dan Zhu, Philippe Ciais, Philippe Peylin, Sébastien Gogo, Fatima Laggoun-Défarge, Mika Aurela, M. Syndonia Bret-Harte, Jiquan Chen, Bogdan H. Chojnicki, Housen Chu, Colin W. Edgar, Eugenie S. Euskirchen, Lawrence B. Flanagan, Krzysztof Fortuniak, David Holl, Janina Klatt, Olaf Kolle, Natalia Kowalska, Lars Kutzbach, Annalea Lohila, Lutz Merbold, Włodzimierz Pawlak, Torsten Sachs, and Klaudia Ziemblińska
Geosci. Model Dev., 15, 2813–2838, https://doi.org/10.5194/gmd-15-2813-2022, https://doi.org/10.5194/gmd-15-2813-2022, 2022
Short summary
Short summary
A methane model that features methane production and transport by plants, the ebullition process and diffusion in soil, oxidation to CO2, and CH4 fluxes to the atmosphere has been embedded in the ORCHIDEE-PEAT land surface model, which includes an explicit representation of northern peatlands. This model, ORCHIDEE-PCH4, was calibrated and evaluated on 14 peatland sites. Results show that the model is sensitive to temperature and substrate availability over the top 75 cm of soil depth.
Weilin Huang, Peter M. van Bodegom, Toni Viskari, Jari Liski, and Nadejda A. Soudzilovskaia
Biogeosciences, 19, 1469–1490, https://doi.org/10.5194/bg-19-1469-2022, https://doi.org/10.5194/bg-19-1469-2022, 2022
Short summary
Short summary
This work focuses on one of the essential pathways of mycorrhizal impact on C cycles: the mediation of plant litter decomposition. We present a model based on litter chemical quality which precludes a conclusive examination of mycorrhizal impacts on soil C. It improves long-term decomposition predictions and advances our understanding of litter decomposition dynamics. It creates a benchmark in quantitatively examining the impacts of plant–microbe interactions on soil C dynamics.
Toni Viskari, Janne Pusa, Istem Fer, Anna Repo, Julius Vira, and Jari Liski
Geosci. Model Dev., 15, 1735–1752, https://doi.org/10.5194/gmd-15-1735-2022, https://doi.org/10.5194/gmd-15-1735-2022, 2022
Short summary
Short summary
We wanted to examine how the chosen measurement data and calibration process affect soil organic carbon model calibration. In our results we found that there is a benefit in using data from multiple litter-bag decomposition experiments simultaneously, even with the required assumptions. Additionally, due to the amount of noise and uncertainties in the system, more advanced calibration methods should be used to parameterize the models.
Olli Nevalainen, Olli Niemitalo, Istem Fer, Antti Juntunen, Tuomas Mattila, Olli Koskela, Joni Kukkamäki, Layla Höckerstedt, Laura Mäkelä, Pieta Jarva, Laura Heimsch, Henriikka Vekuri, Liisa Kulmala, Åsa Stam, Otto Kuusela, Stephanie Gerin, Toni Viskari, Julius Vira, Jari Hyväluoma, Juha-Pekka Tuovinen, Annalea Lohila, Tuomas Laurila, Jussi Heinonsalo, Tuula Aalto, Iivari Kunttu, and Jari Liski
Geosci. Instrum. Method. Data Syst., 11, 93–109, https://doi.org/10.5194/gi-11-93-2022, https://doi.org/10.5194/gi-11-93-2022, 2022
Short summary
Short summary
Better monitoring of soil carbon sequestration is needed to understand the best carbon farming practices in different soils and climate conditions. We, the Field Observatory Network (FiON), have therefore established a methodology for monitoring and forecasting agricultural carbon sequestration by combining offline and near-real-time field measurements, weather data, satellite imagery, and modeling. To disseminate our work, we built a website called the Field Observatory (fieldobservatory.org).
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Jari Walden, Liisa Pirjola, Tuomas Laurila, Juha Hatakka, Heidi Pettersson, Tuomas Walden, Jukka-Pekka Jalkanen, Harri Nordlund, Toivo Truuts, Miika Meretoja, and Kimmo K. Kahma
Atmos. Chem. Phys., 21, 18175–18194, https://doi.org/10.5194/acp-21-18175-2021, https://doi.org/10.5194/acp-21-18175-2021, 2021
Short summary
Short summary
Ship emissions play an important role in the deposition of gaseous compounds and nanoparticles (Ntot), affecting climate, human health (especially in coastal areas), and eutrophication. Micrometeorological methods showed that ship emissions were mainly responsible for the deposition of Ntot, whereas they only accounted for a minor proportion of CO2 deposition. An uncertainty analysis applied to the fluxes and fuel sulfur content results demonstrated the reliability of the results.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Jose Ruiz-Jimenez, Magdalena Okuljar, Outi-Maaria Sietiö, Giorgia Demaria, Thanaporn Liangsupree, Elisa Zagatti, Juho Aalto, Kari Hartonen, Jussi Heinonsalo, Jaana Bäck, Tuukka Petäjä, and Marja-Liisa Riekkola
Atmos. Chem. Phys., 21, 8775–8790, https://doi.org/10.5194/acp-21-8775-2021, https://doi.org/10.5194/acp-21-8775-2021, 2021
Short summary
Short summary
Altogether, 84 size-segregated aerosol samples from four particle size fractions were collected at the Station for Measuring Forest Ecosystem-Atmosphere Relations, Hyytiälä, Finland, in autumn 2017 for the clarification of the complex interrelationships between airborne and particulate chemical traces, amino acids and saccharides, gene copy numbers (16S and 18S for bacteria and fungi, respectively), gas-phase chemistry, and the particle size distribution.
Thomas Thorp, Stephen R. Arnold, Richard J. Pope, Dominick V. Spracklen, Luke Conibear, Christoph Knote, Mikhail Arshinov, Boris Belan, Eija Asmi, Tuomas Laurila, Andrei I. Skorokhod, Tuomo Nieminen, and Tuukka Petäjä
Atmos. Chem. Phys., 21, 4677–4697, https://doi.org/10.5194/acp-21-4677-2021, https://doi.org/10.5194/acp-21-4677-2021, 2021
Short summary
Short summary
We compare modelled near-surface pollutants with surface and satellite observations to better understand the controls on the regional concentrations of pollution in western Siberia for late spring and summer in 2011. We find two commonly used emission inventories underestimate human emissions when compared to observations. Transport emissions are the main source of pollutants within the region during this period, whilst fire emissions peak during June and are only significant south of 60° N.
Lauri Heiskanen, Juha-Pekka Tuovinen, Aleksi Räsänen, Tarmo Virtanen, Sari Juutinen, Annalea Lohila, Timo Penttilä, Maiju Linkosalmi, Juha Mikola, Tuomas Laurila, and Mika Aurela
Biogeosciences, 18, 873–896, https://doi.org/10.5194/bg-18-873-2021, https://doi.org/10.5194/bg-18-873-2021, 2021
Short summary
Short summary
We studied ecosystem- and plant-community-level carbon (C) exchange between subarctic mire and the atmosphere during 2017–2018. We found strong spatial variation in CO2 and CH4 dynamics between the main plant communities. The earlier onset of growing season in 2018 strengthened the CO2 sink of the ecosystem, but this gain was counterbalanced by a later drought period. Variation in water table level, soil temperature and vegetation explained most of the variation in ecosystem-level C exchange.
Camille Yver-Kwok, Carole Philippon, Peter Bergamaschi, Tobias Biermann, Francescopiero Calzolari, Huilin Chen, Sebastien Conil, Paolo Cristofanelli, Marc Delmotte, Juha Hatakka, Michal Heliasz, Ove Hermansen, Kateřina Komínková, Dagmar Kubistin, Nicolas Kumps, Olivier Laurent, Tuomas Laurila, Irene Lehner, Janne Levula, Matthias Lindauer, Morgan Lopez, Ivan Mammarella, Giovanni Manca, Per Marklund, Jean-Marc Metzger, Meelis Mölder, Stephen M. Platt, Michel Ramonet, Leonard Rivier, Bert Scheeren, Mahesh Kumar Sha, Paul Smith, Martin Steinbacher, Gabriela Vítková, and Simon Wyss
Atmos. Meas. Tech., 14, 89–116, https://doi.org/10.5194/amt-14-89-2021, https://doi.org/10.5194/amt-14-89-2021, 2021
Short summary
Short summary
The Integrated Carbon Observation System (ICOS) is a pan-European research infrastructure which provides harmonized and high-precision scientific data on the carbon cycle and the greenhouse gas (GHG) budget. All stations have to undergo a rigorous assessment before being labeled, i.e., receiving approval to join the network. In this paper, we present the labeling process for the ICOS atmospheric network through the 23 stations that were labeled between November 2017 and November 2019.
Hui Zhang, Eeva-Stiina Tuittila, Aino Korrensalo, Aleksi Räsänen, Tarmo Virtanen, Mika Aurela, Timo Penttilä, Tuomas Laurila, Stephanie Gerin, Viivi Lindholm, and Annalea Lohila
Biogeosciences, 17, 6247–6270, https://doi.org/10.5194/bg-17-6247-2020, https://doi.org/10.5194/bg-17-6247-2020, 2020
Short summary
Short summary
We studied the impact of a stream on peatland microhabitats and CH4 emissions in a northern boreal fen. We found that there were higher water levels, lower peat temperatures, and greater oxygen concentrations close to the stream; these supported the highest biomass production but resulted in the lowest CH4 emissions. Further from the stream, the conditions were drier and CH4 emissions were also low. CH4 emissions were highest at an intermediate distance from the stream.
Toni Viskari, Maisa Laine, Liisa Kulmala, Jarmo Mäkelä, Istem Fer, and Jari Liski
Geosci. Model Dev., 13, 5959–5971, https://doi.org/10.5194/gmd-13-5959-2020, https://doi.org/10.5194/gmd-13-5959-2020, 2020
Short summary
Short summary
The research here established whether a Bayesian statistical method called state data assimilation could be used to improve soil organic carbon (SOC) forecasts. Our test case was a fallow experiment where SOC content was measured over several decades from a plot where all vegetation was removed. Our results showed that state data assimilation improved projections and allowed for the detailed model state be updated with coarse total carbon measurements.
Tea Thum, Julia E. M. S. Nabel, Aki Tsuruta, Tuula Aalto, Edward J. Dlugokencky, Jari Liski, Ingrid T. Luijkx, Tiina Markkanen, Julia Pongratz, Yukio Yoshida, and Sönke Zaehle
Biogeosciences, 17, 5721–5743, https://doi.org/10.5194/bg-17-5721-2020, https://doi.org/10.5194/bg-17-5721-2020, 2020
Short summary
Short summary
Global vegetation models are important tools in estimating the impacts of global climate change. The fate of soil carbon is of the upmost importance as its emissions will enhance the atmospheric carbon dioxide concentration. To evaluate the skill of global vegetation models to model the soil carbon and its responses to environmental factors, it is important to use different data sources. We evaluated two different soil carbon models by using atmospheric carbon dioxide concentrations.
Cited articles
Abraha, M., Gelfand, I., Hamilton, S. K., Shao, C., Su, Y.-J., Robertson,
G. P., and Chen, J.: Ecosystem water-use efficiency of annual corn and
perennial grasslands: contributions from land-use history and species
composition, Ecosystems, 19, 1001–1012, https://doi.org/10.1007/s10021-016-9981-2,
2016. a
Aubinet, M., Vesala, T., and Papale, D.: Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer, Dordrecht, The Netherlands, 438 pp., https://doi.org/10.1007/978-94-007-2351-1, 2012. a, b
Aurela, M., Laurila, T., and Tuovinen, J.-P.: Annual CO2 balance of a
subarctic fen in northern Europe: importance of the wintertime efflux,
J. Geophys. Res.-Atmos., 107, 4607, https://doi.org/10.1029/2002JD002055, 2002. a
Baldocchi, D., Chu, H., and Reichstein, M.: Inter-annual variability of net
and gross ecosystem carbon fluxes: A review, Agr. Forest Meteorol., 249, 520–533, https://doi.org/10.1016/j.agrformet.2017.05.015, 2018. a
Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future,
Global Change Biol., 9, 479–492, https://doi.org/10.1046/j.1365-2486.2003.00629.x, 2003. a
Bastos, A., Ciais, P., Friedlingstein, P., Sitch, S., Pongratz, J., Fan, L.,
Wigneron, J., Weber, U., Reichstein, M., Fu, Z., Anthoni, P., Arneth, A., Haverd, V., Jain, A. K., Joetzjer, E., Knauer, J., Lienert, S., Loughran, T., McGuire, P. C., Tian, H., Viovy, N., and Zaehle, S.: Direct and seasonal
legacy effects of the 2018 heat wave and drought on European ecosystem
productivity, Science Advances, 6, eaba2724, https://doi.org/10.1126/sciadv.aba2724,
2020. a, b
Bolinder, M., Kätterer, T., Andrén, O., Ericson, L., Parent, L.-E., and Kirchmann, H.: Long-term soil organic carbon and nitrogen dynamics in
forage-based crop rotations in Northern Sweden (63–64∘ N),
Agr. Ecosyst. Environ., 138, 335–342, https://doi.org/10.1016/j.agee.2010.06.009, 2010. a
Brunsell, N., Nippert, J., and Buck, T.: Impacts of seasonality and surface
heterogeneity on water-use efficiency in mesic grasslands, Ecohydrology, 7,
1223–1233, https://doi.org/10.1002/eco.1455, 2014. a
Ceschia, E., Béziat, P., Dejoux, J.-F., Aubinet, M., Bernhofer, C., Bodson, B., Buchmann, N., Carrara, A., Cellier, P., Di Tommasi, P., Elbers, J. A., Eugster, W., Grünwald, T., Jacobs, C. M. J., Jans, W. W. P., Jones, M., Kutsch, W., Lanigan, G., Magliulo, E., Marloie, O., Moors, E. J., Moureaux, C., Olioso, A., Osborne, B., Sanz, M. J., Saunders, M., Smith, P., Soegaard, H., and Wattenbach, M.:
Management effects on net ecosystem carbon and GHG budgets at European crop
sites, Agr. Ecosyst. Environ., 139, 363–383,
https://doi.org/10.1016/j.agee.2010.09.020, 2010. a
Chapin, F. S., Woodwell, G. M., Randerson, J. T., Rastetter, E. B., Lovett,
G. M., Baldocchi, D. D., Clark, D. A., Harmon, M. E., Schimel, D. S.,
Valentini, R., Wirth, C., Aber, J. D., Cole, J. J., Goulden, M. L., Harden, J. W., Heimann, M., Howarth, R. W., Matson, P. A., McGuire, A. D., Melillo, J. M., Mooney, H. A., Neff, J. C., Houghton, R. A., Pace, M. L., Ryan, M. G., Running, S. W., Sala, O. E., Schlesinger, W. H., and Schulze, E.-D.: Reconciling carbon-cycle concepts, terminology, and
methods, Ecosystems, 9, 1041–1050, 2006. a
Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V.,
Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De Noblet, N., Friend, A. D., Friedlingstein, P., Grünwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J. M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J. F., Sanz, M. J., Schulze, E. D., Vesala, T., and Valentini, R.: Europe-wide
reduction in primary productivity caused by the heat and drought in 2003,
Nature, 437, 529–533, https://doi.org/10.1038/nature03972, 2005. a
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R. B., Piao S., and Thorn, P.: Carbon and other
biogeochemical cycles, in: Climate change 2013: the physical science basis,
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge University
Press, Cambridge, UK, available at: https://pure.mpg.de/rest/items/item_2058766/component/file_2058769/content (last access: 8 February 2021),
465–570, 2014. a
De Boeck, H. J., Lemmens, C. M., Bossuyt, H., Malchair, S., Carnol, M., Merckx, R., Nijs, I., and Ceulemans, R.: How do climate warming and plant species richness affect water use in experimental grasslands?,
Plant Soil, 288, 249–261, https://doi.org/10.1007/s11104-006-9112-5, 2006. a
de Vries, F. T., Griffiths, R. I., Knight, C. G., Nicolitch, O., and Williams, A.: Harnessing rhizosphere microbiomes for drought-resilient crop production, Science, 368, 270–274, https://doi.org/10.1126/science.aaz5192, 2020. a
Don, A. and Schulze, E.-D.: Controls on fluxes and export of dissolved organic carbon in grasslands with contrasting soil types, Biogeochemistry, 91, 117–131, https://doi.org/10.1007/s10533-008-9263-y, 2008. a
Donnelly, C., Greuell, W., Andersson, J., Gerten, D., Pisacane, G., Roudier,
P., and Ludwig, F.: Impacts of climate change on European hydrology at 1.5, 2
and 3 degrees mean global warming above preindustrial level, Climatic Change,
143, 13–26, https://doi.org/10.1007/s10584-017-1971-7, 2017. a
Eichelmann, E., Wagner-Riddle, C., Warland, J., Deen, B., and Voroney, P.:
Carbon dioxide exchange dynamics over a mature switchgrass stand,
GCB Bioenergy, 8, 428–442, https://doi.org/10.1111/gcbb.12259, 2016. a, b
Flanagan, L. B., Wever, L. A., and Carlson, P. J.: Seasonal and interannual
variation in carbon dioxide exchange and carbon balance in a northern
temperate grassland, Global Change Biol., 8, 599–615,
https://doi.org/10.1046/j.1365-2486.2002.00491.x, 2002. a
Foken, T., Leuning, R., Oncley, S. R., Mauder, M., and Aubinet, M.: Corrections and data quality control, in: Eddy covariance, Springer, Dordrecht, 85–131, https://doi.org/10.1007/978-94-007-2351-1_4, 2012. a
Fornara, D. A., Wasson, E.-A., Christie, P., and Watson, C. J.: Long-term nutrient fertilization and the carbon balance of permanent grassland: any evidence for sustainable intensification?, Biogeosciences, 13, 4975–4984, https://doi.org/10.5194/bg-13-4975-2016, 2016. a
Fricker, M. and Willmer, C.: Stomata, Springer, Dordrecht, The Netherlands,
https://doi.org/10.1007/978-94-011-0579-8, 2012. a
Gharun, M., Hörtnagl, L., Paul-Limoges, E., Ghiasi, S., Feigenwinter, I.,
Burri, S., Marquardt, K., Etzold, S., Zweifel, R., Eugster, W., and Buchmann, N.:
Physiological response of Swiss ecosystems to 2018 drought across plant types
and elevation, Philos. T. Roy. Soc. B, 375, 20190521, https://doi.org/10.1098/rstb.2019.0521, 2020. a, b
Gilmanov, T., Soussana, J.-F., Aires, L., Allard, V., Ammann, C., Balzarolo,
M., Barcza, Z., Bernhofer, C., Campbell, C., Cernusca, A., Cescatti, A., Clifton-Brown, J., Dirks, B. O. M., Dore, S., Eugster, W., Fuhrer, J., Gimeno, C., Gruenwald, T., Haszpra, L., Hensen, A., Ibrom, A., Jacobs, A. F. G., Jones, M. B., Lanigan, G., Laurila, T., Lohila, A., Manca, G., Marcolla, B. Nagy, Z., Pilegaard, K., Pinter, K., Pio, C., Raschi, A., Rogiers, N., Sanz, M.J., Stefani, P., Sutton, M., Tuba, Z., Valentini, R., Williams, M. L., and Wohlfahrt, G.:
Partitioning European grassland net ecosystem CO2 exchange into gross
primary productivity and ecosystem respiration using light response function
analysis, Agr. Ecosyst. Environ., 121, 93–120,
https://doi.org/10.1016/j.agee.2006.12.008, 2007. a, b
Gilmanov, T. G., Aires, L., Barcza, Z., Baron, V. S., Belelli, L., Beringer,
J., Billesbach, D., Bonal, D., Bradford, J., Ceschia, E., Cook, D., Corradi, C., Frank, A., Gianelle, D., Gimeno, C., Gruenwald, T., Guo, H., Hanan, N., Haszpra, L., Heilman, J., Jacobs, A., Jones, M. B., Johnson, D. A., Kiely, G., Li, S., Magliulo, V., Moors, E., Nagy, Z., Nasyrov, M., Owensby, C., Pinter, K., Pio, C., Reichstein, M., Sanz, M. J., Scott, R., Soussana, J. F., Stoy, P. C., Svejcar, T., Tuba, Z., and Zhou, G.:
Productivity, respiration, and light-response parameters of world grassland
and agroecosystems derived from flux-tower measurements,
Rangeland Ecol. Manag., 63, 16–39, https://doi.org/10.2111/REM-D-09-00072.1, 2010. a, b
Gomez-Casanovas, N., Matamala, R., Cook, D. R., and Gonzalez-Meler, M. A.: Net ecosystem exchange modifies the relationship between the autotrophic and
heterotrophic components of soil respiration with abiotic factors in prairie
grasslands, Global Change Biol., 18, 2532–2545,
https://doi.org/10.1111/j.1365-2486.2012.02721.x, 2012. a
Harman, G. E. and Uphoff, N.: Symbiotic Root-Endophytic Soil Microbes Improve Crop Productivity and Provide Environmental Benefits, Scientifica, 2019, 9106395,
https://doi.org/10.1155/2019/9106395, 2019. a
Harrison, P. A., Dunford, R. W., Holman, I. P., Cojocaru, G., Madsen, M. S.,
Chen, P.-Y., Pedde, S., and Sandars, D.: Differences between low-end and
high-end climate change impacts in Europe across multiple sectors,
Reg. Environ. Change, 19, 695–709, https://doi.org/10.1007/s10113-018-1352-4, 2019. a
Heikkinen, J., Ketoja, E., Nuutinen, V., and Regina, K.: Declining trend of
carbon in Finnish cropland soils in 1974–2009, Global Change Biol., 19,
1456–1469, https://doi.org/10.1111/gcb.12137, 2013. a
Heimsch, L., Lohila, A., Tuovinen, J.-P., Vekuri, H., Heinonsalo, J., Nevalainen, O., Korkiakoski, M.,
Liski, J.,
Laurila, T., and
Kulmala, L.: Carbon dioxide fluxes and carbon balance of an agricultural grassland in southern Finland, Zenodo [Data set], https://doi.org/10.5281/zenodo.4647078, 2020. a
Houghton, R. A. and Nassikas, A. A.: Global and regional fluxes of carbon from land use and land cover change 1850–2015, Global Biogeochem. Cy., 31, 456–472, https://doi.org/10.1002/2016GB005546, 2017. a
Hu, Z., Yu, G., Fu, Y., Sun, X., Li, Y., Shi, P., Wang, Y., and Zheng, Z.:
Effects of vegetation control on ecosystem water use efficiency within and
among four grassland ecosystems in China, Global Change Biol., 14,
1609–1619, https://doi.org/10.1111/j.1365-2486.2008.01582.x, 2008. a
Jensen, R., Herbst, M., and Friborg, T.: Direct and indirect controls of the
interannual variability in atmospheric CO2 exchange of three contrasting
ecosystems in Denmark, Agr. Forest Meteorol., 233, 12–31,
https://doi.org/10.1016/j.agrformet.2016.10.023, 2017. a, b
Johannes, A., Matter, A., Schulin, R., Weisskopf, P., Baveye, P. C., and
Boivin, P.: Optimal organic carbon values for soil structure quality of
arable soils: Does clay content matter?, Geoderma, 302, 14–21, 2017. a
Jones, G. and Tracy, B.: Persistence and productivity of orchardgrass and
orchardgrass/alfalfa mixtures as affected by cutting height,
Grass Forage Sci., 73, 544–552, https://doi.org/10.1111/gfs.12309, 2018. a
Kindler, R., Siemens, J., Kaiser, K., Walmsley, D. C., Bernhofer, C., Buchmann, N., Cellier, P., Eugster, W., Gleixner, G., Grũnwald, T., Heim, A., Ibrom, A., Jones, S. K., Jones, M., Klumpp, K., Kutsch, W., Larsen, K. S., Lehuger, S., Loubet, B., McKenzie, R., Moors, E., Osborne, B., Pilegaard, K., Rebmann, C., Saunders, M., Schmidt, M. W. I., Schrumpf, M., Seyfferth, J., Skiba, U., Soussana, J.-F., Sutton, M. A., Tefs, C., Vowinckel, B., Zeeman, M. J., and Kaupenjohann, M.: Dissolved carbon leaching from soil is a crucial component of the net
ecosystem carbon balance, Global Change Biol., 17, 1167–1185,
https://doi.org/10.1111/j.1365-2486.2010.02282.x, 2011. a
Kormann, R. and Meixner, F. X.: An analytical footprint model for non-neutral
stratification, Bound.-Lay. Meteorol., 99, 207–224,
https://doi.org/10.1023/A:1018991015119, 2001. a
Kowalski, S., Sartore, M., Burlett, R., Berbigier, P., and Loustau, D.: The
annual carbon budget of a French pine forest (Pinus pinaster)
following harvest, Global Change Biol., 9, 1051–1065,
https://doi.org/10.1046/j.1365-2486.2003.00627.x, 2003. a
Kurc, S. A. and Small, E. E.: Soil moisture variations and ecosystem-scale
fluxes of water and carbon in semiarid grassland and shrubland,
Water Resour. Res., 43, W06416, https://doi.org/10.1029/2006WR005011, 2007. a
Kutsch, W., Aubinet, M., Buchmann, N., Smith, P., Osborne, B., Eugster, W.,
Wattenbach, M., Schrumpf, M., Schulze, E., Tomelleri, E., Ceschia, E., Bernhofer, C., Béziat, P., Carrara, A., Di Tommasi, P., Grünwald, T., Jones, M., Magliulo, V., Marloie, O., Moureaux, C., Olioso, A., Sanz, M. J., Saunders, M., Søgaard, H., and Ziegler, W.: The net
biome production of full crop rotations in Europe, Agr. Ecosyst. Environ., 139, 336–345, 2010. a
Lal, R.: Beyond COP 21: potential and challenges of the “4 per Thousand”
initiative, J. Soil Water Conserv., 71, 20–25,
https://doi.org/10.2489/jswc.71.1.20A, 2016. a, b, c
Laurila, T., Tuovinen, J.-P., Lohila, A., Hatakka, J., Aurela, M., Thum, T.,
Pihlatie, M., Rinne, J., and Vesala, T.: Measuring methane emissions from a
landfill using a cost-effective micrometeorological method,
Geophys. Res. Lett., 32, L19808, https://doi.org/10.1029/2005GL023462, 2005. a
Le Quéré, C., Raupach, M. R., Canadell, J. G., Marland, G., Bopp, L.,
Ciais, P., Conway, T. J., Doney, S. C., Feely, R. A., Foster, P., Friedlingstein, P., Gurney, K., Houghton, R. A., House, J. I., Huntingford, C., Levy, P. E., Lomas, M. R., Majkut, J., Metzl, N., Ometto, J. P., Peters, G. P., Prentice, I. C., Randerson, J. T., Running, S. W., Sarmiento, J. L., Schuster, U., Sitch, S., Takahashi, T., Viovy, N., van der Werf, G. R., and Woodward, F. I.:
Trends in the sources and sinks of carbon dioxide, Nat. Geosci., 2,
831–836, https://doi.org/10.1038/ngeo689, 2009. a
Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A. C., Korsbakken, J. I., Peters, G. P., Canadell, J. G., Jackson, R. B., Boden, T. A., Tans, P. P., Andrews, O. D., Arora, V. K., Bakker, D. C. E., Barbero, L., Becker, M., Betts, R. A., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Cosca, C. E., Cross, J., Currie, K., Gasser, T., Harris, I., Hauck, J., Haverd, V., Houghton, R. A., Hunt, C. W., Hurtt, G., Ilyina, T., Jain, A. K., Kato, E., Kautz, M., Keeling, R. F., Klein Goldewijk, K., Körtzinger, A., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lima, I., Lombardozzi, D., Metzl, N., Millero, F., Monteiro, P. M. S., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S., Nojiri, Y., Padin, X. A., Peregon, A., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Reimer, J., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B. D., Tian, H., Tilbrook, B., Tubiello, F. N., van der Laan-Luijkx, I. T., van der Werf, G. R., van Heuven, S., Viovy, N., Vuichard, N., Walker, A. P., Watson, A. J., Wiltshire, A. J., Zaehle, S., and Zhu, D.: Global Carbon Budget 2017, Earth Syst. Sci. Data, 10, 405–448, https://doi.org/10.5194/essd-10-405-2018, 2018. a, b
Liebethal, C. and Foken, T.: Evaluation of six parameterization approaches for the ground heat flux, Theor. Appl. Climatol., 88, 43–56,
https://doi.org/10.1007/s00704-005-0234-0, 2007. a
Lind, S. E., Shurpali, N. J., Peltola, O., Mammarella, I., Hyvönen, N., Maljanen, M., Räty, M., Virkajärvi, P., and Martikainen, P. J.: Carbon dioxide exchange of a perennial bioenergy crop cultivation on a mineral soil, Biogeosciences, 13, 1255–1268, https://doi.org/10.5194/bg-13-1255-2016, 2016. a, b, c
Lind, S. E., Virkajärvi, P., Hyvönen, N. P., Maljanen, M.,
Kivimäenpää, M., Jokinen, S., Antikainen, S., Latva, M.,
Räty, M., and Martikainen, P. J.: Carbon dioxide and methane exchange
of a perennial grassland on a boreal mineral soil, Boreal Environ. Res., 25, 1–17, http://urn.fi/URN:NBN:fi-fe202002135420 (last access: 15 February 2021), 2020. a
Lloyd, J. and Taylor, J.: On the temperature dependence of soil respiration,
Funct. Ecol., 8, 315–323, https://doi.org/10.2307/2389824, 1994. a, b
Lohila, A., Aurela, M., Tuovinen, J.-P., and Laurila, T.: Annual CO2
exchange of a peat field growing spring barley or perennial forage grass,
J. Geophys. Res.-Atmos., 109, D18116, https://doi.org/10.1029/2004JD004715, 2004. a, b
Lorenz, K. and Lal, R.: Soil Carbon Stock, in: Carbon Sequestration in
Agricultural Ecosystems, Springer, Cham, 39–136, https://doi.org/10.1007/978-3-319-92318-5_2, 2018. a
Manninen, N., Soinne, H., Lemola, R., Hoikkala, L., and Turtola, E.: Effects of agricultural land use on dissolved organic carbon and nitrogen in surface
runoff and subsurface drainage, Sci. Total Environ., 618,
1519–1528, https://doi.org/10.1016/j.scitotenv.2017.09.319, 2018. a
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D.,
Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., O'Rourke, S., Richer-de-Forges, A. C., Odeh, I., Padarian, J., Paustian, K., Pan, G., Poggio, L., Savin, I., Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C.-C., Vågen, T.-G., van Wesemael, B., and Winowiecki, L.: Soil
carbon 4 per mille, Geoderma, 292, 59–86,
https://doi.org/10.1016/j.geoderma.2017.01.002, 2017. a, b, c
Moreau, D., Bardgett, R. D., Finlay, R. D., Jones, D. L., and Philippot, L.: A plant perspective on nitrogen cycling in the rhizosphere, Funct. Ecol., 33, 540–552, https://doi.org/10.1111/1365-2435.13303, 2019. a
Paustian, K., Six, J., Elliott, E., and Hunt, H.: Management options for
reducing CO2 emissions from agricultural soils, Biogeochemistry, 48,
147–163, https://doi.org/10.1023/A:1006271331703, 2000. a
Rebmann, C., Kolle, O., Heinesch, B., Queck, R., Ibrom, A., and Aubinet, M.:
Data acquisition and flux calculations, in: Eddy covariance, Springer, Dordrecht, 59–83, https://doi.org/10.1007/978-94-007-2351-1_3, 2012. a
Regina, K., Pihlatie, M., Esala, M., and Alakukku, L.: Methane fluxes on boreal arable soils, Agr. Ecosyst. Environ., 119, 346–352,
https://doi.org/10.1016/j.agee.2006.08.002, 2007. a
Reinsch, T., Loges, R., Kluß, C., and Taube, F.: Effect of grassland
ploughing and reseeding on CO2 emissions and soil carbon stocks,
Agr. Ecosyst. Environ., 265, 374–383,
https://doi.org/10.1016/j.agee.2018.06.020, 2018. a
Shurpali, N. J., Hyvönen, N. P., Huttunen, J. T., Clement, R. J.,
Reichstein, M., Nykänen, H., Biasi, C., and Martikainen, P. J.:
Cultivation of a perennial grass for bioenergy on a boreal organic
soil-carbon sink or source?, GCB Bioenergy, 1, 35–50,
https://doi.org/10.1111/j.1757-1707.2009.01003.x, 2009. a, b, c
Singh, M., Sarkar, B., Sarkar, S., Churchman, J., Bolan, N., Mandal, S., Menon, M., Purakayastha, T. J., and Beerling, D. J.: Stabilization of soil organic carbon as influenced by clay mineralogy, Advances in Agronomy, 148, 33–84, https://doi.org/10.1016/bs.agron.2017.11.001, 2018. a
Smith, P.: Land use change and soil organic carbon dynamics, Nutrient Cycling
in Agroecosystems, 81, 169–178, https://doi.org/10.1007/s10705-007-9138-y, 2008. a
Smith, P., Soussana, J.-F., Angers, D., Schipper, L., Chenu, C., Rasse, D. P., Batjes, N. H., van Egmond, F., McNeill, S., Kuhnert, M., Arias-Navarro, C., Olesen, J. E., Chirinda, N., Fornara, D., Wollenberg, E., Álvaro-Fuentes, J., Sanz-Cobena, A., and Klumpp, K.: How to measure, report and verify soil carbon change to realize the potential of
soil carbon sequestration for atmospheric greenhouse gas removal, Global Change Biol., 26, 219–241, https://doi.org/10.1111/gcb.14815, 2020. a
Soussana, J.-F., Tallec, T., and Blanfort, V.: Mitigating the greenhouse gas
balance of ruminant production systems through carbon sequestration in
grasslands, Animal, 4, 334–350, https://doi.org/10.1017/S1751731109990784, 2010.
a
Steduto, P.: Water use efficiency, in: Sustainability of Irrigated Agriculture, Springer, Dordrecht, 193–209, https://doi.org/10.1007/978-94-015-8700-6_12, 1996. a
Tang, X., Li, H., Desai, A. R., Nagy, Z., Luo, J., Kolb, T. E., Olioso, A., Xu, X., Yao, L., Kutsch, W., Pilegaard, K., Köstner, B., and Ammann, C.: How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth?, Sci. Rep.-UK, 4, 7483, https://doi.org/10.1038/srep07483, 2014. a
Weiss, M. and Baret, F.: S2ToolBox Level 2 products: LAI, FAPAR, FCOVER,
available at: https://step.esa.int/docs/extra/ATBD_S2ToolBox_L2B_V1.1.pdf (last access: 28 Januray 2021),
2016. a
Willmer, C. and Fricker, M.: Stomata, Springer, Dordrecht, The Netherlands, 1996. a
Wolf, S., Eugster, W., Ammann, C., Häni, M., Zielis, S., Hiller, R.,
Stieger, J., Imer, D., Merbold, L., and Buchmann, N.: Contrasting response of
grassland versus forest carbon and water fluxes to spring drought in
Switzerland, Environ. Res. Lett., 8, 035007,
https://doi.org/10.1088/1748-9326/8/3/035007, 2013. a, b, c
Xu, H.-J., Wang, X.-P., Zhao, C.-Y., and Zhang, X.-X.: Responses of ecosystem
water use efficiency to meteorological drought under different biomes and
drought magnitudes in northern China, Agr. Forest Meteorol.,
278, 107660, https://doi.org/10.1016/j.agrformet.2019.107660, 2019. a, b
Yang, Y., Tilman, D., Furey, G., and Lehman, C.: Soil carbon sequestration
accelerated by restoration of grassland biodiversity, Nat. Commun.,
10, 718, https://doi.org/10.1038/s41467-019-08636-w, 2019. a, b
Short summary
CO2 and H2O fluxes were measured at a newly established eddy covariance site in southern Finland for 2 years from 2018 to 2020. This agricultural grassland site focuses on the conversion from intensive towards more sustainable agricultural management. The first summer experienced prolonged dry periods, and notably larger fluxes were observed in the second summer. The field acted as a net carbon sink during both study years.
CO2 and H2O fluxes were measured at a newly established eddy covariance site in southern Finland...
Altmetrics
Final-revised paper
Preprint