Articles | Volume 20, issue 1
https://doi.org/10.5194/bg-20-57-2023
https://doi.org/10.5194/bg-20-57-2023
Research article
 | 
06 Jan 2023
Research article |  | 06 Jan 2023

Improved representation of phosphorus exchange on soil mineral surfaces reduces estimates of phosphorus limitation in temperate forest ecosystems

Lin Yu, Silvia Caldararu, Bernhard Ahrens, Thomas Wutzler, Marion Schrumpf, Julian Helfenstein, Chiara Pistocchi, and Sönke Zaehle

Related authors

Modelling the effect of climate–substrate interactions on soil organic matter decomposition with the Jena Soil Model
Marleen Pallandt, Marion Schrumpf, Holger Lange, Markus Reichstein, Lin Yu, and Bernhard Ahrens
Biogeosciences, 22, 1907–1928, https://doi.org/10.5194/bg-22-1907-2025,https://doi.org/10.5194/bg-22-1907-2025, 2025
Short summary
Simulating long-term responses of soil organic matter turnover to substrate stoichiometry by abstracting fast and small-scale microbial processes: the Soil Enzyme Steady Allocation Model (SESAM; v3.0)
Thomas Wutzler, Lin Yu, Marion Schrumpf, and Sönke Zaehle
Geosci. Model Dev., 15, 8377–8393, https://doi.org/10.5194/gmd-15-8377-2022,https://doi.org/10.5194/gmd-15-8377-2022, 2022
Short summary

Cited articles

Ahrens, B., Guggenberger, G., Rethemeyer, J., John, S., Marschner, B., Heinze, S., Angst, G., Mueller, C. W., Kögel-Knabner, I., Leuschner, C., Hertel, D., Bachmann, J., Reichstein, M., and Schrumpf, M.: Combination of energy limitation and sorption capacity explains 14C depth gradients, Soil Biol. Biochem., 148, 107912, https://doi.org/10.1016/j.soilbio.2020.107912, 2020. 
Barrow, N. J.: The description of phosphate adsortion curves, J. Soil Sci., 29, 447–462, 1978. 
Barrow, N. J.: A mechanistic model for describing the sorption and desorption of phosphate by soil, J. Soil Sci., 34, 733–750, 1983. 
Brahney, J., Mahowald, N., Ward, D. S., Ballantyne, A. P., and Neff, J. C.: Is atmospheric phosphorus pollution altering global alpine Lake stoichiometry?, Global Biogeochem. Cy., 29, 1369–1383, https://doi.org/10.1002/2015gb005137, 2015. 
Buehler, S., Oberson, A., Rao, I. M., Friesen, D. K., and Frossard, E.: Sequential phosphorus extraction of a 33P-labeled oxisol under contrasting agricultural systems, Soil Sci. Soc. Am. J., 66, 868–877, 2002. 
Download
Short summary
In this study, we addressed a key weakness in current ecosystem models regarding the phosphorus exchange in the soil and developed a new scheme to describe this process. We showed that the new scheme improved the model performance for plant productivity, soil organic carbon, and soil phosphorus content at five beech forest sites in Germany. We claim that this new model could be used as a better tool to study ecosystems under future climate change, particularly phosphorus-limited systems.
Share
Altmetrics
Final-revised paper
Preprint