Articles | Volume 14, issue 23
https://doi.org/10.5194/bg-14-5455-2017
https://doi.org/10.5194/bg-14-5455-2017
Research article
 | 
04 Dec 2017
Research article |  | 04 Dec 2017

Modeling impacts of climate change and grazing effects on plant biomass and soil organic carbon in the Qinghai–Tibetan grasslands

Wenjuan Zhang, Feng Zhang, Jiaguo Qi, and Fujiang Hou

Related authors

HRLT: a high-resolution (1 d, 1 km) and long-term (1961–2019) gridded dataset for surface temperature and precipitation across China
Rongzhu Qin, Zeyu Zhao, Jia Xu, Jian-Sheng Ye, Feng-Min Li, and Feng Zhang
Earth Syst. Sci. Data, 14, 4793–4810, https://doi.org/10.5194/essd-14-4793-2022,https://doi.org/10.5194/essd-14-4793-2022, 2022
Short summary
COMPARISON OF MACHINE LEARNING CLASSIFIERS FOR MULTITEMPORAL AND MULTISENSOR MAPPING OF URBAN LULC FEATURES
Y. Ouma, B. Nkwae, D. Moalafhi, P. Odirile, B. Parida, G. Anderson, and J. Qi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 681–689, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-681-2022,https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-681-2022, 2022
Response of soil respiration and soil microbial biomass carbon and nitrogen to grazing management in the Loess Plateau, China
Zhen Wang, Xiuli Wan, Mei Tian, Xiaoyan Wang, Junbo Chen, Xianjiang Chen, Shenghua Chang, and Fujiang Hou
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-531,https://doi.org/10.5194/bg-2018-531, 2019
Manuscript not accepted for further review
Short summary
Grazing increases litter decomposition rate but decreases nitrogen release rate in an alpine meadow
Yi Sun, Xiong Z. He, Fujiang Hou, Zhaofeng Wang, and Shenghua Chang
Biogeosciences, 15, 4233–4243, https://doi.org/10.5194/bg-15-4233-2018,https://doi.org/10.5194/bg-15-4233-2018, 2018
Short summary
Leguminous species sequester more carbon than gramineous species in cultivated grasslands of a semi-arid area
Yu Liu, Fuping Tian, Pengyan Jia, Jingge Zhang, Fujiang Hou, and Gaolin Wu
Solid Earth, 8, 83–91, https://doi.org/10.5194/se-8-83-2017,https://doi.org/10.5194/se-8-83-2017, 2017

Related subject area

Biogeochemistry: Modelling, Terrestrial
Effect of land-use legacy on the future carbon sink for the conterminous US
Benjamin S. Felzer
Biogeosciences, 20, 573–587, https://doi.org/10.5194/bg-20-573-2023,https://doi.org/10.5194/bg-20-573-2023, 2023
Short summary
Peatlands and their carbon dynamics in northern high latitudes from 1990 to 2300: a process-based biogeochemistry model analysis
Bailu Zhao and Qianlai Zhuang
Biogeosciences, 20, 251–270, https://doi.org/10.5194/bg-20-251-2023,https://doi.org/10.5194/bg-20-251-2023, 2023
Short summary
Improved representation of phosphorus exchange on soil mineral surfaces reduces estimates of phosphorus limitation in temperate forest ecosystems
Lin Yu, Silvia Caldararu, Bernhard Ahrens, Thomas Wutzler, Marion Schrumpf, Julian Helfenstein, Chiara Pistocchi, and Sönke Zaehle
Biogeosciences, 20, 57–73, https://doi.org/10.5194/bg-20-57-2023,https://doi.org/10.5194/bg-20-57-2023, 2023
Short summary
A coupled ground heat flux–surface energy balance model of evaporation using thermal remote sensing observations
Bimal K. Bhattacharya, Kaniska Mallick, Devansh Desai, Ganapati S. Bhat, Ross Morrison, Jamie R. Clevery, William Woodgate, Jason Beringer, Kerry Cawse-Nicholson, Siyan Ma, Joseph Verfaillie, and Dennis Baldocchi
Biogeosciences, 19, 5521–5551, https://doi.org/10.5194/bg-19-5521-2022,https://doi.org/10.5194/bg-19-5521-2022, 2022
Short summary
Modeling nitrous oxide emissions from agricultural soil incubation experiments using CoupModel
Jie Zhang, Wenxin Zhang, Per-Erik Jansson, and Søren O. Petersen
Biogeosciences, 19, 4811–4832, https://doi.org/10.5194/bg-19-4811-2022,https://doi.org/10.5194/bg-19-4811-2022, 2022
Short summary

Cited articles

Abdalla, M., Wattenbach, M., Smith, P., Ambus, P., Jones, M., and Williams, M.: Application of the DNDC model to predict emissions of N2O from Irish agriculture, Geoderma, 151, 327–337, 2009.
Araya, A., Hoogenboom, G., Luedeling, E., Hadgu, K. M., Kisekka, I., and Martorano, L. G.: Assessment of maize growth and yield using crop models under present and future climate in southwestern Ethiopia, Agr. Forest Meteorol., 214–215, 252–265, https://doi.org/10.1016/j.agrformet.2015.08.259, 2015.
Bagchi, S. and Ritchie, M. E.: Introduced grazers can restrict potential soil carbon sequestration through impacts on plant community composition, Ecol. Lett., 13, 959–968, https://doi.org/10.1111/j.1461-0248.2010.01486.x, 2010.
Cao, M. and Woodward, F. I.: Dynamic responses of terrestrial ecosystem carbon cycling to global climate change, Nature, 393, 249–252, 1998.
Download
Short summary
Climate change disturbances are the main factor that affects the grassland on a large scale in long-term impact assessments. Here, the total grassland biomass had a negative relationship with the grazing, and the SOC had a positive relationship with the grazing intensity. The total grassland biomass and average SOC in QTP grassland were reduced significantly under the future climate change projection. The change in the biomass and SOC had significant differences in the spatial distribution.
Altmetrics
Final-revised paper
Preprint