Articles | Volume 14, issue 23
https://doi.org/10.5194/bg-14-5455-2017
https://doi.org/10.5194/bg-14-5455-2017
Research article
 | 
04 Dec 2017
Research article |  | 04 Dec 2017

Modeling impacts of climate change and grazing effects on plant biomass and soil organic carbon in the Qinghai–Tibetan grasslands

Wenjuan Zhang, Feng Zhang, Jiaguo Qi, and Fujiang Hou

Related authors

HRLT: a high-resolution (1 d, 1 km) and long-term (1961–2019) gridded dataset for surface temperature and precipitation across China
Rongzhu Qin, Zeyu Zhao, Jia Xu, Jian-Sheng Ye, Feng-Min Li, and Feng Zhang
Earth Syst. Sci. Data, 14, 4793–4810, https://doi.org/10.5194/essd-14-4793-2022,https://doi.org/10.5194/essd-14-4793-2022, 2022
Short summary
COMPARISON OF MACHINE LEARNING CLASSIFIERS FOR MULTITEMPORAL AND MULTISENSOR MAPPING OF URBAN LULC FEATURES
Y. Ouma, B. Nkwae, D. Moalafhi, P. Odirile, B. Parida, G. Anderson, and J. Qi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 681–689, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-681-2022,https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-681-2022, 2022
Response of soil respiration and soil microbial biomass carbon and nitrogen to grazing management in the Loess Plateau, China
Zhen Wang, Xiuli Wan, Mei Tian, Xiaoyan Wang, Junbo Chen, Xianjiang Chen, Shenghua Chang, and Fujiang Hou
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-531,https://doi.org/10.5194/bg-2018-531, 2019
Manuscript not accepted for further review
Short summary
Grazing increases litter decomposition rate but decreases nitrogen release rate in an alpine meadow
Yi Sun, Xiong Z. He, Fujiang Hou, Zhaofeng Wang, and Shenghua Chang
Biogeosciences, 15, 4233–4243, https://doi.org/10.5194/bg-15-4233-2018,https://doi.org/10.5194/bg-15-4233-2018, 2018
Short summary
Leguminous species sequester more carbon than gramineous species in cultivated grasslands of a semi-arid area
Yu Liu, Fuping Tian, Pengyan Jia, Jingge Zhang, Fujiang Hou, and Gaolin Wu
Solid Earth, 8, 83–91, https://doi.org/10.5194/se-8-83-2017,https://doi.org/10.5194/se-8-83-2017, 2017

Related subject area

Biogeochemistry: Modelling, Terrestrial
Optimizing the terrestrial ecosystem gross primary productivity using carbonyl sulfide (COS) within a two-leaf modeling framework
Huajie Zhu, Xiuli Xing, Mousong Wu, Weimin Ju, and Fei Jiang
Biogeosciences, 21, 3735–3760, https://doi.org/10.5194/bg-21-3735-2024,https://doi.org/10.5194/bg-21-3735-2024, 2024
Short summary
Modeling integrated soil fertility management for maize production in Kenya using a Bayesian calibration of the DayCent model
Moritz Laub, Magdalena Necpalova, Marijn Van de Broek, Marc Corbeels, Samuel Mathu Ndungu, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Rebecca Yegon, Wycliffe Waswa, Bernard Vanlauwe, and Johan Six
Biogeosciences, 21, 3691–3716, https://doi.org/10.5194/bg-21-3691-2024,https://doi.org/10.5194/bg-21-3691-2024, 2024
Short summary
When and why microbial-explicit soil organic carbon models can be unstable
Erik Schwarz, Samia Ghersheen, Salim Belyazid, and Stefano Manzoni
Biogeosciences, 21, 3441–3461, https://doi.org/10.5194/bg-21-3441-2024,https://doi.org/10.5194/bg-21-3441-2024, 2024
Short summary
The impacts of modelling prescribed vs. dynamic land cover in a high-CO2 future scenario – greening of the Arctic and Amazonian dieback
Sian Kou-Giesbrecht, Vivek K. Arora, Christian Seiler, and Libo Wang
Biogeosciences, 21, 3339–3371, https://doi.org/10.5194/bg-21-3339-2024,https://doi.org/10.5194/bg-21-3339-2024, 2024
Short summary
Climate-based prediction of carbon fluxes from deadwood in Australia
Elizabeth S. Duan, Luciana Chavez Rodriguez, Nicole Hemming-Schroeder, Baptiste Wijas, Habacuc Flores-Moreno, Alexander W. Cheesman, Lucas A. Cernusak, Michael J. Liddell, Paul Eggleton, Amy E. Zanne, and Steven D. Allison
Biogeosciences, 21, 3321–3338, https://doi.org/10.5194/bg-21-3321-2024,https://doi.org/10.5194/bg-21-3321-2024, 2024
Short summary

Cited articles

Abdalla, M., Wattenbach, M., Smith, P., Ambus, P., Jones, M., and Williams, M.: Application of the DNDC model to predict emissions of N2O from Irish agriculture, Geoderma, 151, 327–337, 2009.
Araya, A., Hoogenboom, G., Luedeling, E., Hadgu, K. M., Kisekka, I., and Martorano, L. G.: Assessment of maize growth and yield using crop models under present and future climate in southwestern Ethiopia, Agr. Forest Meteorol., 214–215, 252–265, https://doi.org/10.1016/j.agrformet.2015.08.259, 2015.
Bagchi, S. and Ritchie, M. E.: Introduced grazers can restrict potential soil carbon sequestration through impacts on plant community composition, Ecol. Lett., 13, 959–968, https://doi.org/10.1111/j.1461-0248.2010.01486.x, 2010.
Cao, M. and Woodward, F. I.: Dynamic responses of terrestrial ecosystem carbon cycling to global climate change, Nature, 393, 249–252, 1998.
Download
Short summary
Climate change disturbances are the main factor that affects the grassland on a large scale in long-term impact assessments. Here, the total grassland biomass had a negative relationship with the grazing, and the SOC had a positive relationship with the grazing intensity. The total grassland biomass and average SOC in QTP grassland were reduced significantly under the future climate change projection. The change in the biomass and SOC had significant differences in the spatial distribution.
Altmetrics
Final-revised paper
Preprint