Articles | Volume 13, issue 19
https://doi.org/10.5194/bg-13-5557-2016
https://doi.org/10.5194/bg-13-5557-2016
Research article
 | 
06 Oct 2016
Research article |  | 06 Oct 2016

Surface complexation modeling of Cd(II) sorption to montmorillonite, bacteria, and their composite

Ning Wang, Huihui Du, Qiaoyun Huang, Peng Cai, Xingmin Rong, Xionghan Feng, and Wenli Chen

Related subject area

Biogeochemistry: Modelling, Terrestrial
Optimizing the terrestrial ecosystem gross primary productivity using carbonyl sulfide (COS) within a two-leaf modeling framework
Huajie Zhu, Xiuli Xing, Mousong Wu, Weimin Ju, and Fei Jiang
Biogeosciences, 21, 3735–3760, https://doi.org/10.5194/bg-21-3735-2024,https://doi.org/10.5194/bg-21-3735-2024, 2024
Short summary
Modeling integrated soil fertility management for maize production in Kenya using a Bayesian calibration of the DayCent model
Moritz Laub, Magdalena Necpalova, Marijn Van de Broek, Marc Corbeels, Samuel Mathu Ndungu, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Rebecca Yegon, Wycliffe Waswa, Bernard Vanlauwe, and Johan Six
Biogeosciences, 21, 3691–3716, https://doi.org/10.5194/bg-21-3691-2024,https://doi.org/10.5194/bg-21-3691-2024, 2024
Short summary
When and why microbial-explicit soil organic carbon models can be unstable
Erik Schwarz, Samia Ghersheen, Salim Belyazid, and Stefano Manzoni
Biogeosciences, 21, 3441–3461, https://doi.org/10.5194/bg-21-3441-2024,https://doi.org/10.5194/bg-21-3441-2024, 2024
Short summary
The impacts of modelling prescribed vs. dynamic land cover in a high-CO2 future scenario – greening of the Arctic and Amazonian dieback
Sian Kou-Giesbrecht, Vivek K. Arora, Christian Seiler, and Libo Wang
Biogeosciences, 21, 3339–3371, https://doi.org/10.5194/bg-21-3339-2024,https://doi.org/10.5194/bg-21-3339-2024, 2024
Short summary
Climate-based prediction of carbon fluxes from deadwood in Australia
Elizabeth S. Duan, Luciana Chavez Rodriguez, Nicole Hemming-Schroeder, Baptiste Wijas, Habacuc Flores-Moreno, Alexander W. Cheesman, Lucas A. Cernusak, Michael J. Liddell, Paul Eggleton, Amy E. Zanne, and Steven D. Allison
Biogeosciences, 21, 3321–3338, https://doi.org/10.5194/bg-21-3321-2024,https://doi.org/10.5194/bg-21-3321-2024, 2024
Short summary

Cited articles

Akafia, M. M., Reich, T. J., and Koretsky, C. M.: Assessing Cd, Co, Cu, Ni, and Pb sorption on montmorillonite using surface complexation models, Appl. Geochem., 26, 154–157, 2011.
Alessi, D. S. and Fein, J. B.: Cadmium adsorption to mixtures of soil components: Testing the component additivity approach, Chem. Geol., 270, 186–195, 2010.
Angove, M. J., Johnson, B. B., and Wells, J. D.: Adsorption of cadmium(II) on kaolinite, Colloid. Surface. A, 126, 137–147, 1997.
Benedicto, A., Degueldre, C., and Missana, T.: Gallium sorption on montmorillonite and illite colloids: Experimental study and modelling by ionic exchange and surface complexation, Appl. Geochem., 40, 43–50, 2014.
Borrok, D. M. and Fein, J. B.: The impact of ionic strength on the adsorption of protons, Pb, Cd, and Sr onto the surfaces of Gram negative bacteria: testing non-electrostatic, diffuse, and triple-layer models, J. Colloid Interf. Sci., 286, 110–126, 2005.
Download
Short summary
We developed surface complexation model for Cd(II) adsorption on montmorillonite, B. subtilis, and their composite. The Cd adsorption behavior onto the composite can be described by a component additivity approach (CA-SCM). The Cd complexes of X2Cd, SOCd+, R-COOCd+, and R-POCd+ were the predominant species on the composite over the pH range of 3 to 8. The model could be useful for the prediction of heavy metal distribution at the interface of multicomponents and their risk evaluation in soils.
Altmetrics
Final-revised paper
Preprint