Articles | Volume 13, issue 3
Biogeosciences, 13, 873–885, 2016
https://doi.org/10.5194/bg-13-873-2016
Biogeosciences, 13, 873–885, 2016
https://doi.org/10.5194/bg-13-873-2016

Research article 17 Feb 2016

Research article | 17 Feb 2016

The 2009–2010 step in atmospheric CO2 interhemispheric difference

R. J. Francey and J. S. Frederiksen

Related authors

Variability in a four-network composite of atmospheric CO2 differences between three primary baseline sites
Roger J. Francey, Jorgen S. Frederiksen, L. Paul Steele, and Ray L. Langenfelds
Atmos. Chem. Phys., 19, 14741–14754, https://doi.org/10.5194/acp-19-14741-2019,https://doi.org/10.5194/acp-19-14741-2019, 2019
Short summary
Revised records of atmospheric trace gases CO2, CH4, N2O, and δ13C-CO2 over the last 2000 years from Law Dome, Antarctica
Mauro Rubino, David M. Etheridge, David P. Thornton, Russell Howden, Colin E. Allison, Roger J. Francey, Ray L. Langenfelds, L. Paul Steele, Cathy M. Trudinger, Darren A. Spencer, Mark A. J. Curran, Tas D. van Ommen, and Andrew M. Smith
Earth Syst. Sci. Data, 11, 473–492, https://doi.org/10.5194/essd-11-473-2019,https://doi.org/10.5194/essd-11-473-2019, 2019
Short summary
The Macquarie Island (LoFlo2G) high-precision continuous atmospheric carbon dioxide record
Ann R. Stavert, Rachel M. Law, Marcel van der Schoot, Ray L. Langenfelds, Darren A. Spencer, Paul B. Krummel, Scott D. Chambers, Alistair G. Williams, Sylvester Werczynski, Roger J. Francey, and Russell T. Howden
Atmos. Meas. Tech., 12, 1103–1121, https://doi.org/10.5194/amt-12-1103-2019,https://doi.org/10.5194/amt-12-1103-2019, 2019
Short summary
Unprecedented strength of Hadley circulation in 2015–2016 impacts on CO2 interhemispheric difference
Jorgen S. Frederiksen and Roger J. Francey
Atmos. Chem. Phys., 18, 14837–14850, https://doi.org/10.5194/acp-18-14837-2018,https://doi.org/10.5194/acp-18-14837-2018, 2018
Short summary

Related subject area

Biogeochemistry: Greenhouse Gases
Temporal trends in methane emissions from a small eutrophic reservoir: the key role of a spring burst
Sarah Waldo, Jake J. Beaulieu, William Barnett, D. Adam Balz, Michael J. Vanni, Tanner Williamson, and John T. Walker
Biogeosciences, 18, 5291–5311, https://doi.org/10.5194/bg-18-5291-2021,https://doi.org/10.5194/bg-18-5291-2021, 2021
Short summary
Greenhouse gases emissions from riparian wetlands: an example from the Inner Mongolia grassland region in China
Xinyu Liu, Xixi Lu, Ruihong Yu, Heyang Sun, Hao Xue, Zhen Qi, Zhengxu Cao, Zhuangzhuang Zhang, and Tingxi Liu
Biogeosciences, 18, 4855–4872, https://doi.org/10.5194/bg-18-4855-2021,https://doi.org/10.5194/bg-18-4855-2021, 2021
Short summary
Variability of North Atlantic CO2 fluxes for the 2000–2017 period estimated from atmospheric inverse analyses
Zhaohui Chen, Parvadha Suntharalingam, Andrew J. Watson, Ute Schuster, Jiang Zhu, and Ning Zeng
Biogeosciences, 18, 4549–4570, https://doi.org/10.5194/bg-18-4549-2021,https://doi.org/10.5194/bg-18-4549-2021, 2021
Short summary
Effects of clear-fell harvesting on soil CO2, CH4, and N2O fluxes in an upland Sitka spruce stand in England
Sirwan Yamulki, Jack Forster, Georgios Xenakis, Adam Ash, Jacqui Brunt, Mike Perks, and James I. L. Morison
Biogeosciences, 18, 4227–4241, https://doi.org/10.5194/bg-18-4227-2021,https://doi.org/10.5194/bg-18-4227-2021, 2021
Short summary
Conventional subsoil irrigation techniques do not lower carbon emissions from drained peat meadows
Stefan Theodorus Johannes Weideveld, Weier Liu, Merit van den Berg, Leon Peter Maria Lamers, and Christian Fritz
Biogeosciences, 18, 3881–3902, https://doi.org/10.5194/bg-18-3881-2021,https://doi.org/10.5194/bg-18-3881-2021, 2021
Short summary

Cited articles

Allison, C. E. and Francey, R. J.: Verifying southern hemisphere trends in atmospheric carbon dioxide stable isotopes, J. Geophys. Res., 112, D21304, https://doi.org/10.1029/2006JD007345, 2007.
Ashfold, M. J., Pyle, J. A., Robinson, A. D., Meneguz, E., Nadzir, M. S. M., Phang, S. M., Samah, A. A., Ong, S., Ung, H. E., Peng, L. K., Yong, S. E., and Harris, N. R. P.: Rapid transport of East Asian pollution to the deep tropics, Atmos. Chem. Phys., 15, 3565–3573, https://doi.org/10.5194/acp-15-3565-2015, 2015.
Boden, T. A., Marland, G., and Andres, R. J.: Global, regional, and national fossil-fuel CO2 emissions, Carbon Dioxide Information Analysis Center, 2013.
Denning, A. S., Takahashi, T., and Friedlingstein, P: Can a strong atmospheric CO2 rectifier effect be reconciled with a “reasonable” carbon budget? Tellus, 51B, 249–253, 1999.
Download
Short summary
A step in the annual average CO2 difference between Mauna Loa and the Southern Hemisphere of 0.8 ppm in 2009–2010 has no precedence in 50 years. Variations in interhemispheric exchange coincide with the step, the subsequent 5-year north-south CO2 stability, and historic differences. This behaviour provides a critical test for studies that employ atmospheric transport models to interpret global carbon budgets and inform management of anthropogenic emissions.
Altmetrics
Final-revised paper
Preprint