Articles | Volume 17, issue 15
https://doi.org/10.5194/bg-17-4043-2020
https://doi.org/10.5194/bg-17-4043-2020
Research article
 | 
10 Aug 2020
Research article |  | 10 Aug 2020

A Bayesian approach to evaluation of soil biogeochemical models

Hua W. Xie, Adriana L. Romero-Olivares, Michele Guindani, and Steven D. Allison

Related authors

Climate-based prediction of carbon fluxes from deadwood in Australia
Elizabeth S. Duan, Luciana Chavez Rodriguez, Nicole Hemming-Schroeder, Baptiste Wijas, Habacuc Flores-Moreno, Alexander W. Cheesman, Lucas A. Cernusak, Michael J. Liddell, Paul Eggleton, Amy E. Zanne, and Steven D. Allison
Biogeosciences, 21, 3321–3338, https://doi.org/10.5194/bg-21-3321-2024,https://doi.org/10.5194/bg-21-3321-2024, 2024
Short summary
Changes in soil organic carbon storage predicted by Earth system models during the 21st century
K. E. O. Todd-Brown, J. T. Randerson, F. Hopkins, V. Arora, T. Hajima, C. Jones, E. Shevliakova, J. Tjiputra, E. Volodin, T. Wu, Q. Zhang, and S. D. Allison
Biogeosciences, 11, 2341–2356, https://doi.org/10.5194/bg-11-2341-2014,https://doi.org/10.5194/bg-11-2341-2014, 2014
Phosphate supply explains variation in nucleic acid allocation but not C : P stoichiometry in the western North Atlantic
A. E. Zimmerman, A. C. Martiny, M. W. Lomas, and S. D. Allison
Biogeosciences, 11, 1599–1611, https://doi.org/10.5194/bg-11-1599-2014,https://doi.org/10.5194/bg-11-1599-2014, 2014
A model for variable phytoplankton stoichiometry based on cell protein regulation
J. A. Bonachela, S. D. Allison, A. C. Martiny, and S. A. Levin
Biogeosciences, 10, 4341–4356, https://doi.org/10.5194/bg-10-4341-2013,https://doi.org/10.5194/bg-10-4341-2013, 2013
Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations
K. E. O. Todd-Brown, J. T. Randerson, W. M. Post, F. M. Hoffman, C. Tarnocai, E. A. G. Schuur, and S. D. Allison
Biogeosciences, 10, 1717–1736, https://doi.org/10.5194/bg-10-1717-2013,https://doi.org/10.5194/bg-10-1717-2013, 2013

Related subject area

Biogeochemistry: Modelling, Terrestrial
Optimizing the terrestrial ecosystem gross primary productivity using carbonyl sulfide (COS) within a two-leaf modeling framework
Huajie Zhu, Xiuli Xing, Mousong Wu, Weimin Ju, and Fei Jiang
Biogeosciences, 21, 3735–3760, https://doi.org/10.5194/bg-21-3735-2024,https://doi.org/10.5194/bg-21-3735-2024, 2024
Short summary
Modeling integrated soil fertility management for maize production in Kenya using a Bayesian calibration of the DayCent model
Moritz Laub, Magdalena Necpalova, Marijn Van de Broek, Marc Corbeels, Samuel Mathu Ndungu, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Rebecca Yegon, Wycliffe Waswa, Bernard Vanlauwe, and Johan Six
Biogeosciences, 21, 3691–3716, https://doi.org/10.5194/bg-21-3691-2024,https://doi.org/10.5194/bg-21-3691-2024, 2024
Short summary
When and why microbial-explicit soil organic carbon models can be unstable
Erik Schwarz, Samia Ghersheen, Salim Belyazid, and Stefano Manzoni
Biogeosciences, 21, 3441–3461, https://doi.org/10.5194/bg-21-3441-2024,https://doi.org/10.5194/bg-21-3441-2024, 2024
Short summary
The impacts of modelling prescribed vs. dynamic land cover in a high-CO2 future scenario – greening of the Arctic and Amazonian dieback
Sian Kou-Giesbrecht, Vivek K. Arora, Christian Seiler, and Libo Wang
Biogeosciences, 21, 3339–3371, https://doi.org/10.5194/bg-21-3339-2024,https://doi.org/10.5194/bg-21-3339-2024, 2024
Short summary
Climate-based prediction of carbon fluxes from deadwood in Australia
Elizabeth S. Duan, Luciana Chavez Rodriguez, Nicole Hemming-Schroeder, Baptiste Wijas, Habacuc Flores-Moreno, Alexander W. Cheesman, Lucas A. Cernusak, Michael J. Liddell, Paul Eggleton, Amy E. Zanne, and Steven D. Allison
Biogeosciences, 21, 3321–3338, https://doi.org/10.5194/bg-21-3321-2024,https://doi.org/10.5194/bg-21-3321-2024, 2024
Short summary

Cited articles

Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-carbon response to warming dependent on microbial physiology, Nat. Geosci., 3, 336–340, https://doi.org/10.1038/ngeo846, 2010. 
Anderson, T.-H. and Domsch, K. H.: Ratios of microbial biomass carbon to total organic carbon in arable soils, Soil Biol. Biochem., 21, 471–479, https://doi.org/10.1016/0038-0717(89)90117-X, 1989. 
Beskos, A., Pillai, N., Roberts, G., Sanz-Serna, J. M., and Stuart, A.: Optimal tuning of the hybrid Monte Carlo algorithm, Bernoulli, 19, 1501–1534, https://doi.org/10.3150/12-BEJ414, 2013. 
Betancourt, M.: Diagnosing Suboptimal Cotangent Disintegrations in Hamiltonian Monte Carlo, arXiv [preprint], arXiv:1604.00695, 3 April 2016. 
Betancourt, M.: A Conceptual Introduction to Hamiltonian Monte Carlo, arXiv [preprint], arXiv:1701.02434, 10 January 2017. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Soil biogeochemical models (SBMs) are needed to predict future soil CO2 emissions levels, but we presently lack statistically rigorous frameworks for assessing the predictive utility of SBMs. In this study, we demonstrate one possible approach to evaluating SBMs by comparing the fits of two models to soil CO2 respiration data with recently developed Bayesian statistical goodness-of-fit metrics. Our results demonstrate that our approach is a viable one for continued development and refinement.
Altmetrics
Final-revised paper
Preprint