Articles | Volume 18, issue 7
https://doi.org/10.5194/bg-18-2301-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-2301-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatial patterns of ectoenzymatic kinetics in relation to biogeochemical properties in the Mediterranean Sea and the concentration of the fluorogenic substrate used
France Van Wambeke
CORRESPONDING AUTHOR
Aix-Marseille Université, CNRS/INSU, Université de Toulon,
IRD, Mediterranean Institute of Oceanography (MIO) UM110, 13288, Marseille,
France
Elvira Pulido
Aix-Marseille Université, CNRS/INSU, Université de Toulon,
IRD, Mediterranean Institute of Oceanography (MIO) UM110, 13288, Marseille,
France
Philippe Catala
Sorbonne Universités, UPMC University Paris 6, Laboratoire
d'Océanographie Microbienne (LOMIC), Observatoire Océanologique,
66650, Banyuls/mer, France
Julie Dinasquet
Marine Biology Research Division, Scripps Institution of Oceanography,
UCSD, La Jolla, CA, USA
Sorbonne Universités, UPMC University Paris 6, Laboratoire
d'Océanographie Microbienne (LOMIC), Observatoire Océanologique,
66650, Banyuls/mer, France
Kahina Djaoudi
Aix-Marseille Université, CNRS/INSU, Université de Toulon,
IRD, Mediterranean Institute of Oceanography (MIO) UM110, 13288, Marseille,
France
Molecular and Cellular Biology, The University of Arizona, Tucson, AZ, USA
Anja Engel
GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany
Marc Garel
Aix-Marseille Université, CNRS/INSU, Université de Toulon,
IRD, Mediterranean Institute of Oceanography (MIO) UM110, 13288, Marseille,
France
Sophie Guasco
Aix-Marseille Université, CNRS/INSU, Université de Toulon,
IRD, Mediterranean Institute of Oceanography (MIO) UM110, 13288, Marseille,
France
Barbara Marie
Sorbonne Universités, UPMC University Paris 6, Laboratoire
d'Océanographie Microbienne (LOMIC), Observatoire Océanologique,
66650, Banyuls/mer, France
Sandra Nunige
Aix-Marseille Université, CNRS/INSU, Université de Toulon,
IRD, Mediterranean Institute of Oceanography (MIO) UM110, 13288, Marseille,
France
Vincent Taillandier
CNRS, Sorbonne Universités, Laboratoire d'Océanographie de
Villefranche (LOV), UMR7093, 06230 Villefranche-sur-Mer, France
Birthe Zäncker
CNRS, Sorbonne Universités, Laboratoire d'Océanographie de
Villefranche (LOV), UMR7093, 06230 Villefranche-sur-Mer, France
The Marine Biological Association of the UK, Plymouth, United Kingdom
Christian Tamburini
Aix-Marseille Université, CNRS/INSU, Université de Toulon,
IRD, Mediterranean Institute of Oceanography (MIO) UM110, 13288, Marseille,
France
Related authors
France Van Wambeke, Pascal Conan, Mireille Pujo-Pay, Vincent Taillandier, Olivier Crispi, Alexandra Pavlidou, Sandra Nunige, Morgane Didry, Christophe Salmeron, and Elvira Pulido-Villena
Biogeosciences, 21, 2621–2640, https://doi.org/10.5194/bg-21-2621-2024, https://doi.org/10.5194/bg-21-2621-2024, 2024
Short summary
Short summary
Phosphomonoesterase (PME) and phosphodiesterase (PDE) activities over the epipelagic zone are described in the eastern Mediterranean Sea in winter and autumn. The types of concentration kinetics obtained for PDE (saturation at 50 µM, high Km, high turnover times) compared to those of PME (saturation at 1 µM, low Km, low turnover times) are discussed in regard to the possible inequal distribution of PDE and PME in the size continuum of organic material and accessibility to phosphodiesters.
Lucille Barré, Frédéric Diaz, Thibaut Wagener, France Van Wambeke, Camille Mazoyer, Christophe Yohia, and Christel Pinazo
Geosci. Model Dev., 16, 6701–6739, https://doi.org/10.5194/gmd-16-6701-2023, https://doi.org/10.5194/gmd-16-6701-2023, 2023
Short summary
Short summary
While several studies have shown that mixotrophs play a crucial role in the carbon cycle, the impact of environmental forcings on their dynamics remains poorly investigated. Using a biogeochemical model that considers mixotrophs, we study the impact of light and nutrient concentration on the ecosystem composition in a highly dynamic Mediterranean coastal area: the Bay of Marseille. We show that mixotrophs cope better with oligotrophic conditions compared to strict auto- and heterotrophs.
Julie Dinasquet, Estelle Bigeard, Frédéric Gazeau, Farooq Azam, Cécile Guieu, Emilio Marañón, Céline Ridame, France Van Wambeke, Ingrid Obernosterer, and Anne-Claire Baudoux
Biogeosciences, 19, 1303–1319, https://doi.org/10.5194/bg-19-1303-2022, https://doi.org/10.5194/bg-19-1303-2022, 2022
Short summary
Short summary
Saharan dust deposition of nutrients and trace metals is crucial to microbes in the Mediterranean Sea. Here, we tested the response of microbial and viral communities to simulated dust deposition under present and future conditions of temperature and pH. Overall, the effect of the deposition was dependent on the initial microbial assemblage, and future conditions will intensify microbial responses. We observed effects on trophic interactions, cascading all the way down to viral processes.
Céline Ridame, Julie Dinasquet, Søren Hallstrøm, Estelle Bigeard, Lasse Riemann, France Van Wambeke, Matthieu Bressac, Elvira Pulido-Villena, Vincent Taillandier, Fréderic Gazeau, Antonio Tovar-Sanchez, Anne-Claire Baudoux, and Cécile Guieu
Biogeosciences, 19, 415–435, https://doi.org/10.5194/bg-19-415-2022, https://doi.org/10.5194/bg-19-415-2022, 2022
Short summary
Short summary
We show that in the Mediterranean Sea spatial variability in N2 fixation is related to the diazotrophic community composition reflecting different nutrient requirements among species. Nutrient supply by Saharan dust is of great importance to diazotrophs, as shown by the strong stimulation of N2 fixation after a simulated dust event under present and future climate conditions; the magnitude of stimulation depends on the degree of limitation related to the diazotrophic community composition.
Stéphanie H. M. Jacquet, Christian Tamburini, Marc Garel, Aurélie Dufour, France Van Vambeke, Frédéric A. C. Le Moigne, Nagib Bhairy, and Sophie Guasco
Biogeosciences, 18, 5891–5902, https://doi.org/10.5194/bg-18-5891-2021, https://doi.org/10.5194/bg-18-5891-2021, 2021
Short summary
Short summary
We compared carbon remineralization rates (MRs) in the western and central Mediterranean Sea in late spring during the PEACETIME cruise, as assessed using the barium tracer. We reported higher and deeper (up to 1000 m depth) MRs in the western basin, potentially sustained by an additional particle export event driven by deep convection. The central basin is the site of a mosaic of blooming and non-blooming water masses and showed lower MRs that were restricted to the upper mesopelagic layer.
Elvira Pulido-Villena, Karine Desboeufs, Kahina Djaoudi, France Van Wambeke, Stéphanie Barrillon, Andrea Doglioli, Anne Petrenko, Vincent Taillandier, Franck Fu, Tiphanie Gaillard, Sophie Guasco, Sandra Nunige, Sylvain Triquet, and Cécile Guieu
Biogeosciences, 18, 5871–5889, https://doi.org/10.5194/bg-18-5871-2021, https://doi.org/10.5194/bg-18-5871-2021, 2021
Short summary
Short summary
We report on phosphorus dynamics in the surface layer of the Mediterranean Sea. Highly sensitive phosphate measurements revealed vertical gradients above the phosphacline. The relative contribution of diapycnal fluxes to total external supply of phosphate to the mixed layer decreased towards the east, where atmospheric deposition dominated. Taken together, external sources of phosphate contributed little to total supply, which was mainly sustained by enzymatic hydrolysis of organic phosphorus.
France Van Wambeke, Vincent Taillandier, Karine Desboeufs, Elvira Pulido-Villena, Julie Dinasquet, Anja Engel, Emilio Marañón, Céline Ridame, and Cécile Guieu
Biogeosciences, 18, 5699–5717, https://doi.org/10.5194/bg-18-5699-2021, https://doi.org/10.5194/bg-18-5699-2021, 2021
Short summary
Short summary
Simultaneous in situ measurements of (dry and wet) atmospheric deposition and biogeochemical stocks and fluxes in the sunlit waters of the open Mediterranean Sea revealed complex physical and biological processes occurring within the mixed layer. Nitrogen (N) budgets were computed to compare the sources and sinks of N in the mixed layer. The transitory effect observed after a wet dust deposition impacted the microbial food web down to the deep chlorophyll maximum.
Frédéric Gazeau, France Van Wambeke, Emilio Marañón, Maria Pérez-Lorenzo, Samir Alliouane, Christian Stolpe, Thierry Blasco, Nathalie Leblond, Birthe Zäncker, Anja Engel, Barbara Marie, Julie Dinasquet, and Cécile Guieu
Biogeosciences, 18, 5423–5446, https://doi.org/10.5194/bg-18-5423-2021, https://doi.org/10.5194/bg-18-5423-2021, 2021
Short summary
Short summary
Our study shows that the impact of dust deposition on primary production depends on the initial composition and metabolic state of the tested community and is constrained by the amount of nutrients added, to sustain both the fast response of heterotrophic prokaryotes and the delayed one of phytoplankton. Under future environmental conditions, heterotrophic metabolism will be more impacted than primary production, therefore reducing the capacity of surface waters to sequester anthropogenic CO2.
Frédéric Gazeau, Céline Ridame, France Van Wambeke, Samir Alliouane, Christian Stolpe, Jean-Olivier Irisson, Sophie Marro, Jean-Michel Grisoni, Guillaume De Liège, Sandra Nunige, Kahina Djaoudi, Elvira Pulido-Villena, Julie Dinasquet, Ingrid Obernosterer, Philippe Catala, and Cécile Guieu
Biogeosciences, 18, 5011–5034, https://doi.org/10.5194/bg-18-5011-2021, https://doi.org/10.5194/bg-18-5011-2021, 2021
Short summary
Short summary
This paper shows that the impacts of Saharan dust deposition in different Mediterranean basins are as strong as those observed in coastal waters but differed substantially between the three tested stations, differences attributed to variable initial metabolic states. A stronger impact of warming and acidification on mineralization suggests a decreased capacity of Mediterranean surface communities to sequester CO2 following the deposition of atmospheric particles in the coming decades.
Evelyn Freney, Karine Sellegri, Alessia Nicosia, Leah R. Williams, Matteo Rinaldi, Jonathan T. Trueblood, André S. H. Prévôt, Melilotus Thyssen, Gérald Grégori, Nils Haëntjens, Julie Dinasquet, Ingrid Obernosterer, France Van Wambeke, Anja Engel, Birthe Zäncker, Karine Desboeufs, Eija Asmi, Hilkka Timonen, and Cécile Guieu
Atmos. Chem. Phys., 21, 10625–10641, https://doi.org/10.5194/acp-21-10625-2021, https://doi.org/10.5194/acp-21-10625-2021, 2021
Short summary
Short summary
In this work, we present observations of the organic aerosol content in primary sea spray aerosols (SSAs) continuously generated along a 5-week cruise in the Mediterranean. This information is combined with seawater biogeochemical properties also measured continuously along the ship track to develop a number of parametrizations that can be used in models to determine SSA organic content in oligotrophic waters that represent 60 % of the oceans from commonly measured seawater variables.
Emilio Marañón, France Van Wambeke, Julia Uitz, Emmanuel S. Boss, Céline Dimier, Julie Dinasquet, Anja Engel, Nils Haëntjens, María Pérez-Lorenzo, Vincent Taillandier, and Birthe Zäncker
Biogeosciences, 18, 1749–1767, https://doi.org/10.5194/bg-18-1749-2021, https://doi.org/10.5194/bg-18-1749-2021, 2021
Short summary
Short summary
The concentration of chlorophyll is commonly used as an indicator of the abundance of photosynthetic plankton (phytoplankton) in lakes and oceans. Our study investigates why a deep chlorophyll maximum, located near the bottom of the upper, illuminated layer develops in the Mediterranean Sea. We find that the acclimation of cells to low light is the main mechanism involved and that this deep maximum represents also a maximum in the biomass and carbon fixation activity of phytoplankton.
Kahina Djaoudi, France Van Wambeke, Aude Barani, Nagib Bhairy, Servanne Chevaillier, Karine Desboeufs, Sandra Nunige, Mohamed Labiadh, Thierry Henry des Tureaux, Dominique Lefèvre, Amel Nouara, Christos Panagiotopoulos, Marc Tedetti, and Elvira Pulido-Villena
Biogeosciences, 17, 6271–6285, https://doi.org/10.5194/bg-17-6271-2020, https://doi.org/10.5194/bg-17-6271-2020, 2020
Amavi N. Silva, Surandokht Nikzad, Theresa Barthelmeß, Anja Engel, Hartmut Hermann, Manuela van Pinxteren, Kai Wirtz, Oliver Wurl, and Markus Schartau
EGUsphere, https://doi.org/10.5194/egusphere-2025-4050, https://doi.org/10.5194/egusphere-2025-4050, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We conducted the first meta-analysis combining marine and freshwater studies to understand organic matter enrichment in the surface microlayer. Nitrogen-rich, particulate compounds are often enriched, with patterns varying by multiple factors. We recommend tracking both absolute concentrations and normalized enrichment patterns to better assess ecological conditions. Our study also introduces improved statistical methods for analyzing and comparing surface microlayer data.
Anisbel Leon-Marcos, Moritz Zeising, Manuela van Pinxteren, Sebastian Zeppenfeld, Astrid Bracher, Elena Barbaro, Anja Engel, Matteo Feltracco, Ina Tegen, and Bernd Heinold
Geosci. Model Dev., 18, 4183–4213, https://doi.org/10.5194/gmd-18-4183-2025, https://doi.org/10.5194/gmd-18-4183-2025, 2025
Short summary
Short summary
This study represents the primary marine organic aerosol (PMOA) emissions, focusing on their sea–atmosphere transfer. Using the FESOM2.1–REcoM3 model, concentrations of key organic biomolecules were estimated and integrated into the ECHAM6.3–HAM2.3 aerosol–climate model. Results highlight the influence of marine biological activity and surface winds on PMOA emissions, with reasonably good agreement with observations improving aerosol representation in the southern oceans.
Lin Yang, Peiyi Bian, Jing Zhang, Anja Engel, Bin Yang, and Gui-Peng Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2429, https://doi.org/10.5194/egusphere-2025-2429, 2025
Short summary
Short summary
CO, CDOM, and FDOM were more frequently enriched in the higher temperature and salinity off-shore regions. Marine-humic like CDOM tends to inhibit the sea-to-air flux of CO in the SML. The enrichment and photochemical process of CO in the SML were more active during the daytime. The photochemical production and microbial consumption rates of CO in the SML were more active than in the SSW.
Riaz Bibi, Mariana Ribas-Ribas, Leonie Jaeger, Carola Lehners, Lisa Gassen, Edgar Cortés, Jochen Wollschläger, Claudia Thölen, Hannelore Waska, Jasper Zöbelein, Thorsten Brinkhoff, Isha Athale, Rüdiger Röttgers, Michael Novak, Anja Engel, Theresa Barthelmeß, Josefine Karnatz, Thomas Reinthaler, Dmytro Spriahailo, Gernot Friedrichs, Falko Schäfer, and Oliver Wurl
EGUsphere, https://doi.org/10.5194/egusphere-2025-1773, https://doi.org/10.5194/egusphere-2025-1773, 2025
Short summary
Short summary
A multidisciplinary mesocosm study was conducted to investigate biogeochemical processes and their relationships in the sea-surface microlayer and underlying water during an induced phytoplankton bloom. Phytoplankton-derived organic matter, fuelled microbial activity and biofilm formation, supporting high bacterial abundance. Distinct temporal patterns in biogeochemical parameters and greater variability in the sea-surface microlayer highlight its influence on air–sea interactions.
France Van Wambeke, Pascal Conan, Mireille Pujo-Pay, Vincent Taillandier, Olivier Crispi, Alexandra Pavlidou, Sandra Nunige, Morgane Didry, Christophe Salmeron, and Elvira Pulido-Villena
Biogeosciences, 21, 2621–2640, https://doi.org/10.5194/bg-21-2621-2024, https://doi.org/10.5194/bg-21-2621-2024, 2024
Short summary
Short summary
Phosphomonoesterase (PME) and phosphodiesterase (PDE) activities over the epipelagic zone are described in the eastern Mediterranean Sea in winter and autumn. The types of concentration kinetics obtained for PDE (saturation at 50 µM, high Km, high turnover times) compared to those of PME (saturation at 1 µM, low Km, low turnover times) are discussed in regard to the possible inequal distribution of PDE and PME in the size continuum of organic material and accessibility to phosphodiesters.
Lucille Barré, Frédéric Diaz, Thibaut Wagener, France Van Wambeke, Camille Mazoyer, Christophe Yohia, and Christel Pinazo
Geosci. Model Dev., 16, 6701–6739, https://doi.org/10.5194/gmd-16-6701-2023, https://doi.org/10.5194/gmd-16-6701-2023, 2023
Short summary
Short summary
While several studies have shown that mixotrophs play a crucial role in the carbon cycle, the impact of environmental forcings on their dynamics remains poorly investigated. Using a biogeochemical model that considers mixotrophs, we study the impact of light and nutrient concentration on the ecosystem composition in a highly dynamic Mediterranean coastal area: the Bay of Marseille. We show that mixotrophs cope better with oligotrophic conditions compared to strict auto- and heterotrophs.
Karine Sellegri, Theresa Barthelmeß, Jonathan Trueblood, Antonia Cristi, Evelyn Freney, Clémence Rose, Neill Barr, Mike Harvey, Karl Safi, Stacy Deppeler, Karen Thompson, Wayne Dillon, Anja Engel, and Cliff Law
Atmos. Chem. Phys., 23, 12949–12964, https://doi.org/10.5194/acp-23-12949-2023, https://doi.org/10.5194/acp-23-12949-2023, 2023
Short summary
Short summary
The amount of sea spray emitted to the atmosphere depends on the ocean temperature, but this dependency is not well understood, especially when ocean biology is involved. In this study, we show that sea spray emissions are increased by up to a factor of 4 at low seawater temperatures compared to moderate temperatures, and we quantify the temperature dependence as a function of the ocean biogeochemistry.
Chloé Baumas, Robin Fuchs, Marc Garel, Jean-Christophe Poggiale, Laurent Memery, Frédéric A. C. Le Moigne, and Christian Tamburini
Biogeosciences, 20, 4165–4182, https://doi.org/10.5194/bg-20-4165-2023, https://doi.org/10.5194/bg-20-4165-2023, 2023
Short summary
Short summary
Through the sink of particles in the ocean, carbon (C) is exported and sequestered when reaching 1000 m. Attempts to quantify C exported vs. C consumed by heterotrophs have increased. Yet most of the conducted estimations have led to C demands several times higher than C export. The choice of parameters greatly impacts the results. As theses parameters are overlooked, non-accurate values are often used. In this study we show that C budgets can be well balanced when using appropriate values.
Manon Rocco, Erin Dunne, Alexia Saint-Macary, Maija Peltola, Theresa Barthelmeß, Neill Barr, Karl Safi, Andrew Marriner, Stacy Deppeler, James Harnwell, Anja Engel, Aurélie Colomb, Alfonso Saiz-Lopez, Mike Harvey, Cliff S. Law, and Karine Sellegri
EGUsphere, https://doi.org/10.5194/egusphere-2023-516, https://doi.org/10.5194/egusphere-2023-516, 2023
Preprint archived
Short summary
Short summary
During the Sea2cloud campaign in the Southern Pacific Ocean, we measured air-sea emissions from phytopankton of two key atmospheric compounds: DMS and MeSH. These compounds are well-known to play a great role in atmospheric chemistry and climate. We see in this paper that these compounds are most emited by the nanophytoplankton population. We provide here parameters for climate models to predict future trends of the emissions of these compounds and their roles and impacts on the global warming.
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
Lin Yang, Jing Zhang, Anja Engel, and Gui-Peng Yang
Biogeosciences, 19, 5251–5268, https://doi.org/10.5194/bg-19-5251-2022, https://doi.org/10.5194/bg-19-5251-2022, 2022
Short summary
Short summary
Enrichment factors of dissolved organic matter (DOM) in the eastern marginal seas of China exhibited a significant spatio-temporal variation. Photochemical and enrichment processes co-regulated DOM enrichment in the sea-surface microlayer (SML). Autochthonous DOM was more frequently enriched in the SML than terrestrial DOM. DOM in the sub-surface water exhibited higher aromaticity than that in the SML.
Quentin Devresse, Kevin W. Becker, Arne Bendinger, Johannes Hahn, and Anja Engel
Biogeosciences, 19, 5199–5219, https://doi.org/10.5194/bg-19-5199-2022, https://doi.org/10.5194/bg-19-5199-2022, 2022
Short summary
Short summary
Eddies are ubiquitous in the ocean and alter physical, chemical, and biological processes. However, how they affect organic carbon production and consumption is largely unknown. Here we show how an eddy triggers a cascade effect on biomass production and metabolic activities of phyto- and bacterioplankton. Our results may contribute to the improvement of biogeochemical models used to estimate carbon fluxes in the ocean.
Theresa Barthelmeß and Anja Engel
Biogeosciences, 19, 4965–4992, https://doi.org/10.5194/bg-19-4965-2022, https://doi.org/10.5194/bg-19-4965-2022, 2022
Short summary
Short summary
Greenhouse gases released by human activity cause a global rise in mean temperatures. While scientists can predict how much of these gases accumulate in the atmosphere based on not only human-derived sources but also oceanic sinks, it is rather difficult to predict the major influence of coastal ecosystems. We provide a detailed study on the occurrence, composition, and controls of substances that suppress gas exchange. We thus help to determine what controls coastal greenhouse gas fluxes.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Manuela van Pinxteren, Tiera-Brandy Robinson, Sebastian Zeppenfeld, Xianda Gong, Enno Bahlmann, Khanneh Wadinga Fomba, Nadja Triesch, Frank Stratmann, Oliver Wurl, Anja Engel, Heike Wex, and Hartmut Herrmann
Atmos. Chem. Phys., 22, 5725–5742, https://doi.org/10.5194/acp-22-5725-2022, https://doi.org/10.5194/acp-22-5725-2022, 2022
Short summary
Short summary
A class of marine particles (transparent exopolymer particles, TEPs) that is ubiquitously found in the world oceans was measured for the first time in ambient marine aerosol particles and marine cloud waters in the tropical Atlantic Ocean. TEPs are likely to have good properties for influencing clouds. We show that TEPs are transferred from the ocean to the marine atmosphere via sea-spray formation and our results suggest that they can also form directly in aerosol particles and in cloud water.
Julie Dinasquet, Estelle Bigeard, Frédéric Gazeau, Farooq Azam, Cécile Guieu, Emilio Marañón, Céline Ridame, France Van Wambeke, Ingrid Obernosterer, and Anne-Claire Baudoux
Biogeosciences, 19, 1303–1319, https://doi.org/10.5194/bg-19-1303-2022, https://doi.org/10.5194/bg-19-1303-2022, 2022
Short summary
Short summary
Saharan dust deposition of nutrients and trace metals is crucial to microbes in the Mediterranean Sea. Here, we tested the response of microbial and viral communities to simulated dust deposition under present and future conditions of temperature and pH. Overall, the effect of the deposition was dependent on the initial microbial assemblage, and future conditions will intensify microbial responses. We observed effects on trophic interactions, cascading all the way down to viral processes.
Karine Desboeufs, Franck Fu, Matthieu Bressac, Antonio Tovar-Sánchez, Sylvain Triquet, Jean-François Doussin, Chiara Giorio, Patrick Chazette, Julie Disnaquet, Anaïs Feron, Paola Formenti, Franck Maisonneuve, Araceli Rodríguez-Romero, Pascal Zapf, François Dulac, and Cécile Guieu
Atmos. Chem. Phys., 22, 2309–2332, https://doi.org/10.5194/acp-22-2309-2022, https://doi.org/10.5194/acp-22-2309-2022, 2022
Short summary
Short summary
This article reports the first concurrent sampling of wet deposition samples and surface seawater and was performed during the PEACETIME cruise in the remote Mediterranean (May–June 2017). Through the chemical composition of trace metals (TMs) in these samples, it emphasizes the decrease of atmospheric metal pollution in this area during the last few decades and the critical role of wet deposition as source of TMs for Mediterranean surface seawater, especially for intense dust deposition events.
Delaney B. Kilgour, Gordon A. Novak, Jon S. Sauer, Alexia N. Moore, Julie Dinasquet, Sarah Amiri, Emily B. Franklin, Kathryn Mayer, Margaux Winter, Clare K. Morris, Tyler Price, Francesca Malfatti, Daniel R. Crocker, Christopher Lee, Christopher D. Cappa, Allen H. Goldstein, Kimberly A. Prather, and Timothy H. Bertram
Atmos. Chem. Phys., 22, 1601–1613, https://doi.org/10.5194/acp-22-1601-2022, https://doi.org/10.5194/acp-22-1601-2022, 2022
Short summary
Short summary
We report measurements of gas-phase volatile organosulfur molecules made during a mesocosm phytoplankton bloom experiment. Dimethyl sulfide (DMS), methanethiol (MeSH), and benzothiazole accounted for on average over 90 % of total gas-phase sulfur emissions. This work focuses on factors controlling the production and emission of DMS and MeSH and the role of non-DMS molecules (such as MeSH and benzothiazole) in secondary sulfate formation in coastal marine environments.
Céline Ridame, Julie Dinasquet, Søren Hallstrøm, Estelle Bigeard, Lasse Riemann, France Van Wambeke, Matthieu Bressac, Elvira Pulido-Villena, Vincent Taillandier, Fréderic Gazeau, Antonio Tovar-Sanchez, Anne-Claire Baudoux, and Cécile Guieu
Biogeosciences, 19, 415–435, https://doi.org/10.5194/bg-19-415-2022, https://doi.org/10.5194/bg-19-415-2022, 2022
Short summary
Short summary
We show that in the Mediterranean Sea spatial variability in N2 fixation is related to the diazotrophic community composition reflecting different nutrient requirements among species. Nutrient supply by Saharan dust is of great importance to diazotrophs, as shown by the strong stimulation of N2 fixation after a simulated dust event under present and future climate conditions; the magnitude of stimulation depends on the degree of limitation related to the diazotrophic community composition.
Matthieu Bressac, Thibaut Wagener, Nathalie Leblond, Antonio Tovar-Sánchez, Céline Ridame, Vincent Taillandier, Samuel Albani, Sophie Guasco, Aurélie Dufour, Stéphanie H. M. Jacquet, François Dulac, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 18, 6435–6453, https://doi.org/10.5194/bg-18-6435-2021, https://doi.org/10.5194/bg-18-6435-2021, 2021
Short summary
Short summary
Phytoplankton growth is limited by the availability of iron in about 50 % of the ocean. Atmospheric deposition of desert dust represents a key source of iron. Here, we present direct observations of dust deposition in the Mediterranean Sea. A key finding is that the input of iron from dust primarily occurred in the deep ocean, while previous studies mainly focused on the ocean surface. This new insight will enable us to better represent controls on global marine productivity in models.
Stéphanie H. M. Jacquet, Christian Tamburini, Marc Garel, Aurélie Dufour, France Van Vambeke, Frédéric A. C. Le Moigne, Nagib Bhairy, and Sophie Guasco
Biogeosciences, 18, 5891–5902, https://doi.org/10.5194/bg-18-5891-2021, https://doi.org/10.5194/bg-18-5891-2021, 2021
Short summary
Short summary
We compared carbon remineralization rates (MRs) in the western and central Mediterranean Sea in late spring during the PEACETIME cruise, as assessed using the barium tracer. We reported higher and deeper (up to 1000 m depth) MRs in the western basin, potentially sustained by an additional particle export event driven by deep convection. The central basin is the site of a mosaic of blooming and non-blooming water masses and showed lower MRs that were restricted to the upper mesopelagic layer.
Elvira Pulido-Villena, Karine Desboeufs, Kahina Djaoudi, France Van Wambeke, Stéphanie Barrillon, Andrea Doglioli, Anne Petrenko, Vincent Taillandier, Franck Fu, Tiphanie Gaillard, Sophie Guasco, Sandra Nunige, Sylvain Triquet, and Cécile Guieu
Biogeosciences, 18, 5871–5889, https://doi.org/10.5194/bg-18-5871-2021, https://doi.org/10.5194/bg-18-5871-2021, 2021
Short summary
Short summary
We report on phosphorus dynamics in the surface layer of the Mediterranean Sea. Highly sensitive phosphate measurements revealed vertical gradients above the phosphacline. The relative contribution of diapycnal fluxes to total external supply of phosphate to the mixed layer decreased towards the east, where atmospheric deposition dominated. Taken together, external sources of phosphate contributed little to total supply, which was mainly sustained by enzymatic hydrolysis of organic phosphorus.
France Van Wambeke, Vincent Taillandier, Karine Desboeufs, Elvira Pulido-Villena, Julie Dinasquet, Anja Engel, Emilio Marañón, Céline Ridame, and Cécile Guieu
Biogeosciences, 18, 5699–5717, https://doi.org/10.5194/bg-18-5699-2021, https://doi.org/10.5194/bg-18-5699-2021, 2021
Short summary
Short summary
Simultaneous in situ measurements of (dry and wet) atmospheric deposition and biogeochemical stocks and fluxes in the sunlit waters of the open Mediterranean Sea revealed complex physical and biological processes occurring within the mixed layer. Nitrogen (N) budgets were computed to compare the sources and sinks of N in the mixed layer. The transitory effect observed after a wet dust deposition impacted the microbial food web down to the deep chlorophyll maximum.
Frédéric Gazeau, France Van Wambeke, Emilio Marañón, Maria Pérez-Lorenzo, Samir Alliouane, Christian Stolpe, Thierry Blasco, Nathalie Leblond, Birthe Zäncker, Anja Engel, Barbara Marie, Julie Dinasquet, and Cécile Guieu
Biogeosciences, 18, 5423–5446, https://doi.org/10.5194/bg-18-5423-2021, https://doi.org/10.5194/bg-18-5423-2021, 2021
Short summary
Short summary
Our study shows that the impact of dust deposition on primary production depends on the initial composition and metabolic state of the tested community and is constrained by the amount of nutrients added, to sustain both the fast response of heterotrophic prokaryotes and the delayed one of phytoplankton. Under future environmental conditions, heterotrophic metabolism will be more impacted than primary production, therefore reducing the capacity of surface waters to sequester anthropogenic CO2.
Frédéric Gazeau, Céline Ridame, France Van Wambeke, Samir Alliouane, Christian Stolpe, Jean-Olivier Irisson, Sophie Marro, Jean-Michel Grisoni, Guillaume De Liège, Sandra Nunige, Kahina Djaoudi, Elvira Pulido-Villena, Julie Dinasquet, Ingrid Obernosterer, Philippe Catala, and Cécile Guieu
Biogeosciences, 18, 5011–5034, https://doi.org/10.5194/bg-18-5011-2021, https://doi.org/10.5194/bg-18-5011-2021, 2021
Short summary
Short summary
This paper shows that the impacts of Saharan dust deposition in different Mediterranean basins are as strong as those observed in coastal waters but differed substantially between the three tested stations, differences attributed to variable initial metabolic states. A stronger impact of warming and acidification on mineralization suggests a decreased capacity of Mediterranean surface communities to sequester CO2 following the deposition of atmospheric particles in the coming decades.
Evelyn Freney, Karine Sellegri, Alessia Nicosia, Leah R. Williams, Matteo Rinaldi, Jonathan T. Trueblood, André S. H. Prévôt, Melilotus Thyssen, Gérald Grégori, Nils Haëntjens, Julie Dinasquet, Ingrid Obernosterer, France Van Wambeke, Anja Engel, Birthe Zäncker, Karine Desboeufs, Eija Asmi, Hilkka Timonen, and Cécile Guieu
Atmos. Chem. Phys., 21, 10625–10641, https://doi.org/10.5194/acp-21-10625-2021, https://doi.org/10.5194/acp-21-10625-2021, 2021
Short summary
Short summary
In this work, we present observations of the organic aerosol content in primary sea spray aerosols (SSAs) continuously generated along a 5-week cruise in the Mediterranean. This information is combined with seawater biogeochemical properties also measured continuously along the ship track to develop a number of parametrizations that can be used in models to determine SSA organic content in oligotrophic waters that represent 60 % of the oceans from commonly measured seawater variables.
Charlotte M. Beall, Jennifer M. Michaud, Meredith A. Fish, Julie Dinasquet, Gavin C. Cornwell, M. Dale Stokes, Michael D. Burkart, Thomas C. Hill, Paul J. DeMott, and Kimberly A. Prather
Atmos. Chem. Phys., 21, 9031–9045, https://doi.org/10.5194/acp-21-9031-2021, https://doi.org/10.5194/acp-21-9031-2021, 2021
Short summary
Short summary
Ice-nucleating particles (INPs) can influence multiple climate-relevant cloud properties by triggering droplet freezing at relative humidities below or temperatures above the freezing point of water. The ocean is a significant INP source; however, the specific identities of marine INPs remain largely unknown. Here, we identify 14 ice-nucleating microbes from aerosol and precipitation samples collected at a coastal site in southern California, two or more of which are likely marine.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Stéphanie H. M. Jacquet, Dominique Lefèvre, Christian Tamburini, Marc Garel, Frédéric A. C. Le Moigne, Nagib Bhairy, and Sophie Guasco
Biogeosciences, 18, 2205–2212, https://doi.org/10.5194/bg-18-2205-2021, https://doi.org/10.5194/bg-18-2205-2021, 2021
Short summary
Short summary
We present new data concerning the relation between biogenic barium (Baxs, a tracer of carbon remineralization at mesopelagic depths), O2 consumption and prokaryotic heterotrophic production (PHP) in the Mediterranean Sea. The purpose of this paper is to improve our understanding of the relation between Baxs, PHP and O2 and to test the validity of the Dehairs transfer function in the Mediterranean Sea. This relation has never been tested in the Mediterranean Sea.
Jonathan V. Trueblood, Alessia Nicosia, Anja Engel, Birthe Zäncker, Matteo Rinaldi, Evelyn Freney, Melilotus Thyssen, Ingrid Obernosterer, Julie Dinasquet, Franco Belosi, Antonio Tovar-Sánchez, Araceli Rodriguez-Romero, Gianni Santachiara, Cécile Guieu, and Karine Sellegri
Atmos. Chem. Phys., 21, 4659–4676, https://doi.org/10.5194/acp-21-4659-2021, https://doi.org/10.5194/acp-21-4659-2021, 2021
Short summary
Short summary
Sea spray aerosols (SSAs) can be an important source of ice-nucleating particles (INPs) that impact cloud properties over the oceans. In the Mediterranean Sea, we found that the INPs in the seawater surface microlayer increased by an order of magnitude after a rain dust event that impacted iron and bacterial abundances. The INP properties of SSA (INPSSA) increased after a 3 d delay. Outside this event, INPSSA could be parameterized as a function of the seawater biogeochemistry.
Birthe Zäncker, Michael Cunliffe, and Anja Engel
Biogeosciences, 18, 2107–2118, https://doi.org/10.5194/bg-18-2107-2021, https://doi.org/10.5194/bg-18-2107-2021, 2021
Short summary
Short summary
Fungi are found in numerous marine environments. Our study found an increased importance of fungi in the Ionian Sea, where bacterial and phytoplankton counts were reduced, but organic matter was still available, suggesting fungi might benefit from the reduced competition from bacteria in low-nutrient, low-chlorophyll (LNLC) regions.
Emilio Marañón, France Van Wambeke, Julia Uitz, Emmanuel S. Boss, Céline Dimier, Julie Dinasquet, Anja Engel, Nils Haëntjens, María Pérez-Lorenzo, Vincent Taillandier, and Birthe Zäncker
Biogeosciences, 18, 1749–1767, https://doi.org/10.5194/bg-18-1749-2021, https://doi.org/10.5194/bg-18-1749-2021, 2021
Short summary
Short summary
The concentration of chlorophyll is commonly used as an indicator of the abundance of photosynthetic plankton (phytoplankton) in lakes and oceans. Our study investigates why a deep chlorophyll maximum, located near the bottom of the upper, illuminated layer develops in the Mediterranean Sea. We find that the acclimation of cells to low light is the main mechanism involved and that this deep maximum represents also a maximum in the biomass and carbon fixation activity of phytoplankton.
Nadja Triesch, Manuela van Pinxteren, Anja Engel, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 163–181, https://doi.org/10.5194/acp-21-163-2021, https://doi.org/10.5194/acp-21-163-2021, 2021
Short summary
Short summary
To investigate the sources of free amino acids (FAAs) in the marine atmosphere, concerted measurements (the simultaneous investigation of seawater, size-segregated aerosol particles and cloud water) were performed at the Cabo Verde islands. This study describes the transfer of FAAs as part of organic matter from the ocean into the atmosphere on a molecular level. In the investigated marine environment, a high enrichment of FAAs in submicron aerosol particles and in cloud droplets was observed.
Kahina Djaoudi, France Van Wambeke, Aude Barani, Nagib Bhairy, Servanne Chevaillier, Karine Desboeufs, Sandra Nunige, Mohamed Labiadh, Thierry Henry des Tureaux, Dominique Lefèvre, Amel Nouara, Christos Panagiotopoulos, Marc Tedetti, and Elvira Pulido-Villena
Biogeosciences, 17, 6271–6285, https://doi.org/10.5194/bg-17-6271-2020, https://doi.org/10.5194/bg-17-6271-2020, 2020
Cécile Guieu, Fabrizio D'Ortenzio, François Dulac, Vincent Taillandier, Andrea Doglioli, Anne Petrenko, Stéphanie Barrillon, Marc Mallet, Pierre Nabat, and Karine Desboeufs
Biogeosciences, 17, 5563–5585, https://doi.org/10.5194/bg-17-5563-2020, https://doi.org/10.5194/bg-17-5563-2020, 2020
Short summary
Short summary
We describe here the objectives and strategy of the PEACETIME project and cruise, dedicated to dust deposition and its impacts in the Mediterranean Sea. Our strategy to go a step further forward than in previous approaches in understanding these impacts by catching a real deposition event at sea is detailed. We summarize the work performed at sea, the type of data acquired and their valorization in the papers published in the special issue.
Alexandra N. Loginova, Andrew W. Dale, Frédéric A. C. Le Moigne, Sören Thomsen, Stefan Sommer, David Clemens, Klaus Wallmann, and Anja Engel
Biogeosciences, 17, 4663–4679, https://doi.org/10.5194/bg-17-4663-2020, https://doi.org/10.5194/bg-17-4663-2020, 2020
Short summary
Short summary
We measured dissolved organic carbon (DOC), nitrogen (DON) and matter (DOM) optical properties in pore waters and near-bottom waters of the eastern tropical South Pacific off Peru. The difference between diffusion-driven and net fluxes of DOC and DON and qualitative changes in DOM optical properties suggested active microbial utilisation of the released DOM at the sediment–water interface. Our results suggest that the sediment release of DOM contributes to microbial processes in the area.
Cited articles
Aluwihare, L. I., Repeta, D. J., and Chen, R. F.: A major biopolymeric
component to dissolved organic carbon in surface sea water, Nature, 387,
166–169, https://doi.org/10.1038/387166a0, 1997.
Aminot, A. and Kérouel, R.: Dosage automatique des nutriments dans les
eaux marines, in: Méthodes d'analyses en milieu marin, Ifremer, Plouzané, 188, IBSN no. 978-2-7592-0023-8, 2007.
Arnosti, C.: Microbial Extracellular enzymes and the marine carbon cycle,
Annu. Rev. Mar. Sci., 3, 401–425, 2011.
Arrieta, J. M. and Herndl, G. J.: Assessing the diversity of marine
bacterial β-glucosidases by capillary Electrophoresis Zymography,
Appl. Environ. Microb., 67, 4896–4900, 2001.
Azam, F. and Long, R. A.: Sea snow microcosms, Nature, 414, 495–498,
2001.
Azzaro, M., La Ferla, R., Maimone, G., Monticelli, L. S., Zaccone, R., and
Civitarese, G.: Prokaryotic dynamics and heterotrophic metabolism in a deep
convection site of Eastern Mediterranean Sea (the Southern Adriatic Pit),
Cont. Shelf Res., 44, 106–118, https://doi.org/10.1016/j.csr.2011.07.011, 2012.
Baltar, F.: Watch Out for the “Living Dead”: Cell-Free Enzymes and Their
Fate, Front. Microbiol., 8, 2438, https://doi.org/10.3389/fmicb.2017.02438, 2018.
Baltar, F., Arístegui, J., Gasol, J. M., Sintes, E., and Herndl, G. J.:
Evidence of prokaryotic metabolism on suspended particulate organic matter
in the dark waters of the subtropical North Atlantic, Limnol. Oceanogr., 54,
182–193, https://doi.org/10.4319/lo.2009.54.1.0182, 2009a.
Baltar, F., Arístegui, J., Sintes, E., van Aken, H. M., Gasol, J. M., and Herndl, G. J.: Prokaryotic extracellular enzymatic activity in relation to biomass production and respiration in the meso- and bathypelagic waters of
the (sub)tropical Atlantic, Environ. Microbiol., 11, 1998–2014, 2009b.
Bogé, G., Lespilette, M., Jamet, D., and Jamet, J.-L.: Role of sea water
DIP and DOP in controlling bulk alkaline phosphatase activity in N.W.
Mediterranean Sea (Toulon, France), Mar. Pollut. Bull., 64, 1989–1996, https://doi.org/10.1016/j.marpolbul.2012.07.028, 2012.
Bogé, G., Lespilette, M., Jamet, D., and Jamet, J.-L.: The relationships
between particulate and soluble alkaline phosphatase activities and the
concentration of phosphorus dissolved in the seawater of Toulon Bay (NW
Mediterranean), Mar. Pollut. Bull., 74, 413–419, https://doi.org/10.1016/j.marpolbul.2013.06.003, 2013.
Bogé, G., Lespilette, M., Jamet, D., and Jamet, J.-L.: Role of DOP on
the alkaline phosphatase activity of size fractionated plankton in coastal
waters in the NW Mediterranean Sea (Toulon Bay, France), Mar. Pollut. Bull.,
117, 264–273, https://doi.org/10.1016/j.marpolbul.2016.11.037, 2017.
Caruso, G., Monticelli, L., La Ferla, R., Maimone, G., Azzaro, M., Azzaro,
F., Decembrini, F., De Pasquale, F., Leonardi, M., Raffa, F., Zappal, G.,
and De Domenico, E.: Patterns of Prokaryotic Activities and Abundance among
the Epi-Meso and Bathypelagic Zones of the Southern-Central Tyrrhenian Sea,
Oceanography, 1, 1000105, https://doi.org/10.4172/ocn.1000105, 2013.
Cauwet, G.: Determination of dissolved organic carbon (DOC) and nitrogen
(DON) by high temperature combustion, in: Methods of Seawater analysis,
edited by: Grashoff, K., Kremling, K., and Ehrhard, M., edn. 3, Wiley-VCH Verlag, Weinheim, Baden-Württemberg, Germany, 407–420, 1999.
Céa, B., Lefèvre, D., Chirurgien, L., Raimbault, P., Garcia, N.,
Charrière, B., Grégori, G., Ghiglione, J.-F., Barani, A., Lafont,
M., and Van Wambeke, F.: An annual survey of bacterial production,
respiration and ectoenzyme activity in coastal NW Mediterranean waters:
temperature and resource controls, Environ. Sci. Pollut. R., 22, 13654–13668, https://doi.org/10.1007/s11356-014-3500-9, 2014.
Christian, J. R. and Karl, D. M.: Bacterial ectoenzymes in marine waters:
Activity ratio and temperature responses in three oceanographic provinces,
Limnol. Oceanogr., 40, 1046–1053, 1995.
Chróst, R. J.: Microbial enzymes in aquatic environments, Springer-Verlag, New York, USA, 1991.
Crottereau, C. and Delmas, D.: Exoproteolytic activity in an Atlantic pond
(France): estimates of in situ activity, Aquat. Microb. Ecol., 15, 217–224,
1998.
Dittmar, T. H., Cherrier, J., and Ludwichowski, K.-U: The analysis of amino
acids in seawater, in: Practical Guidelines for the Analysis of Seawater,
edited by: Wurl, O., CRC-Press, Boca Raton, Florida, USA, 67–78, 2009.
Engel, A. and Händel, N.: A novel protocol for determining the
concentration and composition of sugars in particulate and in high molecular
weight dissolved organic matter (HMW-DOM) in seawater, Mar. Chem., 127,
180–191, 2011.
Fang, J., Zhang, L., Li, J., Kato, C., Tamburini, C., Zhang, Y., Dang, H.,
Wang, G., and Wang, F.: The POM-DOM piezophilic microorganism continuum
(PDPMC) – The role of piezophilic microorganisms in the global ocean carbon
cycle, Sci. China Earth Sci., 58, 106–115, https://doi.org/10.1007/s11430-014-4985-2, 2015.
Fukuda, R., Sohrin, Y., Saotome, N., Fukuda, H., Nagata, T., and Koike, I.:
East-west gradient in ectoenzyme activity in the subartic Pacific: Possible
regulation by zinc, Limnol. Oceanogr., 45, 930–939, 2000.
Gazeau, F., Ridame, C., Van Wambeke, F., Alliouane, S., Stolpe, C., Irisson, J.-O., Marro, S., Grisoni, J.-M., De Liège, G., Nunige, S., Djaoudi, K., Pulido-Villena, E., Dinasquet, J., Obernosterer, I., Catala, P., and Guieu, C.: Impact of dust enrichment on Mediterranean plankton communities under present and future conditions of pH and temperature: an experimental overview, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2020-202, in review, 2020.
Grossart, H.-P., Tang, K. W., Kiørboe, T., and Ploug, H.: Comparison of
cell-specific activity between free-living and attached bacteria using
isolates and natural assemblages, FEMS Microbiol. Lett., 266, 194–200,
https://doi.org/10.1111/j.1574-6968.2006.00520.x, 2007.
Guieu, C., and Desboeufs, K. : PEACETIME cruise, RV Pourquoi pas?, https://doi.org/10.17600/17000300, 2017.
Guieu, C., D'Ortenzio, F., Dulac, F., Taillandier, V., Doglioli, A., Petrenko, A., Barrillon, S., Mallet, M., Nabat, P., and Desboeufs, K.: Introduction: Process studies at the air–sea interface after atmospheric deposition in the Mediterranean Sea – objectives and strategy of the PEACETIME oceanographic campaign (May–June 2017), Biogeosciences, 17, 5563–5585, https://doi.org/10.5194/bg-17-5563-2020, 2020a.
Guieu C., Desboeufs, K., Albani, S., et al.: Biogeochemical dataset collected during the PEACETIME cruise, https://www.seanoe.org/data/00645/75747/ (last access: 7 April 2021), 2020b.
Guyennon, A., Baklouti, M., Diaz, F., Palmieri, J., Beuvier, J., Lebaupin-Brossier, C., Arsouze, T., Béranger, K., Dutay, J.-C., and Moutin, T.: New insights into the organic carbon export in the Mediterranean Sea from 3-D modeling, Biogeosciences, 12, 7025–7046, https://doi.org/10.5194/bg-12-7025-2015, 2015.
Hopkins, T. S.: Physical processes in the Mediterranean Basin, in: Estuarine
transport processes, edited by: Kjerfve, B., University of South Carolina,
South Carolina, USA, 269–310, 1978.
Hoppe, H.-G.: Significance of exoenzymatic activities in the ecology of
brackish water: measurements by means of methylumbelliferyl-substrates,
Mar. Ecol. Prog. Ser., 11, 299–308, 1983.
Hoppe, H.-G. and Ullrich, S.: Profiles of ectoenzymes in the Indian Ocean:
phenomena of phosphatase activity in the mesopelagic zone, Aquat. Microb. Ecol., 19, 139–148, 1999.
Hoppe, H.-G., Ducklow, H., and Karrasch, B.: Evidence for dependency of
bacterial growth on enzymatic hydrolysis of particulate organic matter in
the mesopelagic ocean, Mar. Ecol. Prog. Ser., 93, 277–283, 1993.
Keil, R. G. and Kirchman, D.: Dissolved combined amino acids: Chemical form
and utilization by marine bacteria, Limnol. Oceanogr., 38, 1256–1270, 1993.
Kirchman, D. L.: Leucine incorporation as a measure of biomass production by
heterotrophic bacteria, in: Handbook of methods in aquatic microbial
ecology, edited by: Kemp, P. F., Sherr, B. F., Sherr, E. B., and Cole, J. J.,
Lewis, Boca Raton, Florida, USA, 509–512, 1993.
Koch, A. L.: Oligotrophs versus copiotrophs, BioEssays, 23, 657–661, 2001.
Koike, I. and Nagata, T.: High potential activity of extracellular alkaline
phosphatase in deep waters of the central Pacific, Deep-Sea Res. Pt. II, 44,
2283–2294, 1997.
Kress, N., Manca, B., Klein, B., and Deponte, D.: Continuing influence of
the changed thermohaline circulation in the eastern Mediterranean on the
distribution of dissolved oxygen and nutrients: Physical and chemical
characterization of the water masses, J. Geophys. Res.-Oceans, 108, 8109,
https://doi.org/10.1029/2002JC001397, 2003.
Krom, M. D., Herut, B., and Mantoura, R. F. C.: Nutrient budget for the
eastern Mediterranean: Implication for phosphorus limitation, Limnol.
Oceanogr, 49, 1582–1592, https://doi.org/10.4319/lo.2004.49.5.1582, 2004.
Lascaratos, A., Roether, W., Nittis, K., and Klein, B.: Recent changes in
deep water formation and spreading in the eastern Mediterranean Sea: a
review, Prog. Oceanogr., 44, 5–36, 1999.
Lemée, R., Rochelle-Newall, E., Van Wambeke, F., Pizay, M.-D., Rinaldi,
P., and Gattuso, J.-P.: Seasonal variation of bacterial production,
respiration and growth efficiency in the open NW Mediterranean Sea, Aquat.
Microb. Ecol., 29, 227–237, 2002.
Lindroth, P. and Mopper, K.: High performance liquid chromatographic
determination of subpicomole amounts of amino acids by precolumn
fluorescence derivatization with o-phthaldialdehyde, Anal. Chem., 51,
1667–1674, 1979.
Malanotte-Rizzoli, P., Manca, B. B., Marullo, S., Ribera d'Alcalà, M.,
Roether, W., Theocharis, A., and Conversano, F.: The Levantine Intermediate
Water Experiment (LIWEX) Group: Levantine basin – A laboratory for multiple
water mass formation processes, J. Geophys. Res.-Oceans, 108, 8101,
https://doi.org/10.1029/2002JC001643, 2003.
Marañón, E., Van Wambeke, F., Uitz, J., Boss, E. S., Dimier, C., Dinasquet, J., Engel, A., Haëntjens, N., Pérez-Lorenzo, M., Taillandier, V., and Zäncker, B.: Deep maxima of phytoplankton biomass, primary production and bacterial production in the Mediterranean Sea, Biogeosciences, 18, 1749–1767, https://doi.org/10.5194/bg-18-1749-2021, 2021.
Martinez, J. and Azam, F.: Aminopeptidase activity in marine chroococcoid
cyanobacteria, Appl. Environ. Microb., 59, 3701–3707, 1993.
Martinez, J., Smith, D. C., Steward, G. F., and Azam, F.: Variability in
ectohydrolytic enzyme activities of pelagic marine bacteria and its
significance for substrate processing in the sea, Aquat. Microb. Ecol., 10,
223–230, 1996.
Misic, C., Povero, P., and Fabiano, M.: Ectoenzymatic ratios in relation to
particulate organic matter distribution
(Ross Sea, Antarctica), Microbial Ecol., 44, 224–234, https://doi.org/10.1007/s00248-002-2017-9, 2002.
Piontek, J., Sperling, M., Nothig, E.-V., and Engel, A.: Regulation of
bacterioplankton activity in Fram Strait (Arctic Ocean) during early summer:
The role of organic matter supply and temperature, J. Marine Syst., 132,
83–94, https://doi.org/10.1016/j.jmarsys.2014.01.003, 2014.
Placenti, F., Azzaro, M., Artale, V., La Ferla, R., Caruso, G., Santinelli,
C., Maimone, G., Monticelli, L. S., Quinci, E. M., and Sprovieri, M.:
Biogeochemical patterns and microbial processes in the Eastern Mediterranean
Deep Water of Ionian Sea, Hydrobiologia, 815, 97–112, https://doi.org/10.1007/s10750-018-3554-7, 2018.
Pulido-Villena, E., Djaoudi, K., Desboeufs, K., Van Wambeke, F., Barrillon, S., Doglioli, A., Petrenko, A., Taillandier, V., D’Ortenzio, F., Fu, F., Gaillard, T., Guasco, S., Nunige, S., Triquet, S., and Guieu, C.: Phosphorus cycling in the upper waters of the Mediterranean Sea (Peacetime cruise): relative contribution of external and internal sources, in preparation for Biogeosciences, 2021, special issue PEACETIME.
Raimbault, P., Pouvesle, W., Diaz, F., Garcia, N., and Sempere, R.:
Wet-oxidation and automated 930 colorimetry for simultaneous determination
of organic carbon, nitrogen and phosphorus dissolved in seawater, Mar. Chem.,
66, 161–169, 1999.
Rath, J., Schiller, C., and Herndl, G. J.: Ectoenzyme activity and bacterial
dynamics along a trophic gradient in the Caribbean Sea, Mar. Ecol. Prog.
Ser., 102, 89–96, 1993.
Sala, M. M., Karner, M., Arin, L., and Marrassé, C.: Measurement of
ectoenzyme activities as an indication of inorganic nutrient imbalance in
microbial communities, Aquat. Microb. Ecol., 23, 301–311,
https://doi.org/10.3354/ame023301, 2001.
Schroeder, K., Cozzi, S., Belgacem, M., Borghini, M., Cantoni, C., Durante,
S., Petrizzo, A., Poiana, A., and Chiggiato, J.: Along-Path Evolution of
Biogeochemical and Carbonate System Properties in the Intermediate Water of
the Western Mediterranean, Front. Mar. Sci., 7, 375, https://doi.org/10.3389/fmars.2020.00375, 2020.
Severin, T., Sauret, C., Boutrif, M., Duhaut, T., Kessouri, F., Oriol, L.,
Caparros, J., Pujo-Pay, M., Durrieu de Madron, X., Garel, M., Tamburini, C.,
Conan, P., and Ghiglione, J. F.: Impact of an intense water column mixing
(0–1500 m) on prokaryotic diversity and activities during an open-ocean
convection event in the NW Mediterranean Sea, Environ. Microbiol., 18,
4378–4390, https://doi.org/10.1111/1462-2920.13324, 2016.
Sharp, J. H.: Improved analysis for “particulate” organic carbon and
nitrogen from seawater, Limnol. Oceanogr., 19, 984–989, 1974.
Simon, M., Grossart, H., Schweitzer, B., and Ploug, H.: Microbial ecology of
organic aggregates in aquatic ecosystems, Aquat. Microb. Ecol., 28, 175–211,
https://doi.org/10.3354/ame028175, 2002.
Sinsabaugh, R. and Follstad Shah, J.: Ectoenzymatic Stoichiometry and
Ecological Theory, Annu. Rev. Ecol. Evol. S., 43, 313–343,
https://doi.org/10.1146/annurev-ecolsys-071112-124414, 2012.
Siokou-Frangou, I., Christaki, U., Mazzocchi, M. G., Montresor, M., Ribera d'Alcalá, M., Vaqué, D., and Zingone, A.: Plankton in the open Mediterranean Sea: a review, Biogeosciences, 7, 1543–1586, https://doi.org/10.5194/bg-7-1543-2010, 2010.
Smith, D. C. and Azam, F.: A simple, economical method for measuring
bacterial protein synthesis rates in sea water using 3H-Leucine,
Marine Microbial Food Webs, 6, 107–114, 1992.
Smith, D. C., Simon, M., Alldredge, A. L., and Azam, F.: Intense hydrolytic
activity on marine aggregates and implications for rapid particle
dissolution, Nature, 359, 139–142, 1992.
Stocker, R.: Marine Microbes See a Sea of gradients, Science, 38, 628–633,
2012.
Taillandier, V., Prieur, L., D'Ortenzio, F., Ribera d'Alcalà, M., and Pulido-Villena, E.: Profiling float observation of thermohaline staircases in the western Mediterranean Sea and impact on nutrient fluxes, Biogeosciences, 17, 3343–3366, https://doi.org/10.5194/bg-17-3343-2020, 2020.
Tamburini, C., Garcin, J., Ragot, M., and Bianchi, A.: Biopolymer hydrolysis
and bacterial production under ambient hydrostatic pressure through a 2000 m
water column in the NW Mediterranean, Deep-Sea Res. Pt. II, 49, 2109–2123,
https://doi.org/10.1016/S0967-0645(02)00030-9, 2002.
Tamburini, C., Garcin, J., and Bianchi, A.: Role of deep-sea bacteria in
organic matter mineralization and adaptation to hydrostatic pressure
conditions in the NW Mediterranean Sea, Aquat. Microb. Ecol., 32, 209–218,
https://doi.org/10.3354/ame032209, 2003.
Tamburini, C., Garel, M., Al Ali, B., Mérigot, B., Kriwy, P.,
Charrière, B., and Budillon, G.: Distribution and activity of Bacteria
and Archaea in the different water masses of the Tyrrhenian Sea,
Deep-Sea Res. Pt. II, 56, 700–714, https://doi.org/10.1016/j.dsr2.2008.07.021, 2009.
Testor, P., Bosse, A., Houpert, L., Margirier, F., Mortier, L., Legoff, H.,
Dausse, D., Labaste, M., Kartensen, J., Hayes, D., Olita, A., Ribotti, A.,
Schroeder, K., Chiggiato, J., Onken, R., Heslop, R., Mourre, B., D'Ortenzio,
F., Mayot, N., Lavigne, H., de Fommervault, O., Coppola, L., Prieur, L.,
Taillandier, V., Durrieu de Madron, X., Bourrin, F., Many, G., Damien, P.,
Estournel, C., Marsaleix, P., Taupier-Lepage, I., Raimbault, P., Waldman,
R., Bouin, M.-N., Giordani, H., Caniaux, G., Somot, S., Ducrocq, V., and Conan, P.: Multiscale observations of deep convection in the northwestern
Mediterranean Sea during winter 2012–2013 using multiple platforms,
J. Geophys. Res.-Oceans, 123, 1745–1776, https://doi.org/10.1002/2016JC012671, 2018.
The Mermex Group: Marine ecosystems' responses to climatic and anthropogenic
forcings in the Mediterranean, Prog. Oceanogr., 91, 97–166, https://doi.org/10.1016/j.pocean.2011.02.003, 2011.
Thingstad, T. F. and Rassoulzadegan, F.: Nutrient limitations, microbial
food webs, and “biological C-pumps”: suggested interactions in a P-limited
Mediterranean, Mar. Ecol. Prog. Ser., 117, 299–306, 1995.
Tholosan, O., Lamy, F., Garcin, J., Polychronaki, T., and Bianchi, A.:
Biphasic extracellular proteolytic enzyme activity in benthic water and
sediment in the North Western Mediterranean Sea, Appl. Environ. Microb., 65,
1619–1626, 1999.
Unanue, M., Ayo, B., Agis, M., Slezak, D., Herndl, G. J., and Iriberri, J.:
Ectoenzymatic activity and uptake of monomers in marine bacterioplankton
described by a biphasic kinetic model, Microbial Ecol., 37, 36–48,
https://doi.org/10.1007/s002489900128, 1999.
Van Wambeke, F., Christaki, U., Giannakourou, A., Moutin, T., and
Souvemerzoglou, K.: Longitudinal and vertical trends of bacterial limitation
by phosphorus and carbon in the Mediterranean Sea, Microbial Ecol., 43,
119–133, https://doi.org/10.1007/s00248-001-0038-4, 2002.
Van Wambeke, F., Taillandier, V., Deboeufs, K., Pulido-Villena, E., Dinasquet, J., Engel, A., Marañón, E., Ridame, C., and Guieu, C.: Influence of atmospheric deposition on biogeochemical cycles in an oligotrophic ocean system, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2020-411, in review, 2020.
Wright, R. T. and Hobbie, J. E.: Use of glucose and acetate by bacteria and
algae in aquatic ecosystems, Ecology, 47, 447–464, 1966.
Wust, G.: On the vertical circulation of the Mediterranean Sea, J. Geophys.
Res., 66, 3261–3271, 1961.
Zaccone, R. and Caruso, G.: Microbial enzymes in the Mediterranean Sea:
relationship with climate changes, AIMS Microbiology, 5, 251–272, 2019.
Zaccone, R., Boldrin, A., Caruso, G., La Ferla, R., Maimone, G., Santinelli,
C., and Turchetto, M.: Enzymatic Activities and Prokaryotic Abundance in
Relation to Organic Matter along a West–East Mediterranean Transect
(TRANSMED Cruise), Microbial Ecol., 64, 54–66, 2012.
Zhang, J.-Z. and Chi, J.: Automated analysis of nano-molar concentrations of
phosphate in natural waters with liquid waveguide, Environ. Sci. Technol.,
36, 1048–1053, https://doi.org/10.1021/es011094v, 2002.
Zhao, Z., Baltar, B., and Herndl, G. J.: Linking extracellular enzymes to
phylogeny indicates a predominantly particle-associated lifestyle of
deep-sea prokaryotes, Sciences Advances, 6, eaaz4354,
https://doi.org/10.1126/sciadv.aaz4354, 2020.
Short summary
Michaelis–Menten kinetics were determined for alkaline phosphatase, aminopeptidase and β-glucosidase in the Mediterranean Sea. Although the ectoenzymatic-hydrolysis contribution to heterotrophic prokaryotic needs was high in terms of N, it was low in terms of C. This study points out the biases in interpretation of the relative differences in activities among the three tested enzymes in regard to the choice of added concentrations of fluorogenic substrates.
Michaelis–Menten kinetics were determined for alkaline phosphatase, aminopeptidase and...
Altmetrics
Final-revised paper
Preprint